Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Майкопский государственный технологический университет»

Медицинский институт фармацевтический факультет

МЕТОДИЧЕСКИЕ УКАЗАНИЯ по изучению дисциплины «Методы микробиологического контроля лекарственных средств»

для студентов специальности 33.05.01. Фармация»

УДК [615.3:579](07)

ББК 28.4

M 54

Печатается по решению научно- технического совета ФГБОУ «МГТУ»

Учебно- методической комиссии медицинского института Составитель:

Бойко Ирина Евгеньевна - кандидат технических наук, доцент фармации ФГБОУ ВО «Майкопский государственный технологический университет»

Рецензент:

Бочкарева Инна Ивановна – кандидат фармацевтических наук, доцент кафедры фармации ФГБОУ ВО «Майкопский государственный технологический университет»

Методические указания к лабораторному практикуму по изучении дисциплины

«Методы микробиологического контроля лекарственных средств»

Для студентов специальности 33.05.01. Фармация» Майкоп 2021г

Методические указания предназначены для студентов фармацевтического факультета по специальности 33.05.01 «Фармация» Составлено в соответствии с Федеральным государственным образовательным стандартом в рамках дисциплины «Методы микробиологического контроля лекарственных средств»

Методические указания ориентированы на расширения профессиональных знаний и конкретных навыков в практической деятельности провизоров, необходимы знания в области микробиологии, санитарной бактериологии. Провизор должен иметь четкие представления о мире микроорганизмов, распространении их в природе (воздухе, почве, на растениях, о фитопатогенных микроорганизмах, о микробах, приводящих к порче лекарственного сырья. Владеть навыками, позволяющими выполнять санитарно- бактериологические методы исследования лекарственных препаратов, лекарственного сырья, аптечного оборудования. посуды, воздуха аптечных помещений. Знать нормы допустимого количества микроорганизмов в объектах исследования аптек.

Введение

В основные задачи дисциплины «Методы микробиологического контроля лекарственных средств» входит овладеть системными знаниями о биологических особенностях различных групп микроорганизмов, об их распространении в биосфере об их роли в природе, медицине и фармации для выполнения профессиональных обязанностей касающихся микробиологических аспектов профессиональной деятельности специалиста- провизора.

В методических рекомендациях представлены характеристика микрофлоры растений и растительного лекарственного сырья, требования к санитарному состоянию аптек и лекарственных средств, а также методы исследования на биологическую загрязненность лекарств аптечного и заводского изготовления. Важное место в профессиональной деятельности провизора занимают вопросы асептики, антисептики и стерилизации, а также хранения и контроля лекарственного сырья и готовых лекарственных средств, соблюдение правил санитарногигиенического и противоэпидемического режима и техники безопасности при работе с микроорганизмами.

Приобретение студентами знаний, умений и навыков, которые позволяют им на современном уровне, в соответствии с квалификационной характеристикой, выполнять профессиональные обязанности в части касающейся фармацевтической сферы и основ санитарной фармацевтической микробиологии

Лабораторная работа №1

Тема: Определение микрофлоры растительного лекарственного сырья

Цель работы: освоить методику и получить навыки определения общего микробного числа в образце лекарственного средства, путем посева на дифференциально- диагностические среды **Оборудование:** образцы лекарственных средств, фосфатный буферный раствор, дифференциально- диагностические среды для определения плесневых и дрожжевых грибов, для определения стафилококка, синегнойной палочки, кишечной палочки, сальмонелл

Общие положения

Отбор проб: от каждой серии лекарственного средства отбирают среднюю пробу (не менее 50г, для мягких форм – не менее 15 г), состоящую из разовых проб, взятых, как минимум, из 10 разных упаковок. Отобранные пробы необходимо сопровождать актами. В зависимости от физических свойств лекарственной формы образец для анализа готовят в виде раствора, суспензии или эмульсии.

Методика исследования: 1. Определение общего микробного число. Образец лекарственного средства разводят 1:10, для чего 10 г (мл) препарата растворяют, суспензируют или эмульгируют в соответствующем объеме фосфатного буферного раствора. Посев проводят двухслойным агаровым методом: по 1 мл разведения 1:10 вносят в две пробирки с 4 мл расплавленного и охлажденного до +45-50°С питательного агара, тщательно перемешивают и переносят в 2 чашки Петри с 15-20 мл питательного агара. Покачиванием равномерно распределяют верхний слой агара. После застывания среды чашки инкубируют в термостате при +37°С в течение 5 суток, подсчитывают число колоний на 2 чашках, находят среднее значение и, умножая на показатель разведения, вычисляют число бактерий в 1 г (мл) лекарственного средства.

- 2. Определение плесневых и дрожжевых грибов. 1 мл разведения 1:10 (см. выше) вносят в 2 пробирки с расплавленной и остуженной средой Сабуро, тщательно перемешивают и выливают в 2 чашки Петри, инкубируют при +20-22°С в течение 5 суток. Количество дрожжевых и плесневых грибов определяют, как и общее микробное число.
- 3. Определение стафилококка, синегнойной палочки, кишечной палочки, сальмонелл. Для определения эшерихий и сальмонелл 10 г (мл) исследуемого препарата вносят в среду накопления лактозный бульон, из расчета 1:10, инкубируют при +37°C в течение 2-5 часов. После инкубации 10 мл среды накопления переносят в 100 мл глюкозо-пептонной среды, перемешивают и инкубируют в течение 24 ч. Остальную среду накопления ставят в холодильник (для количественного определения энтеробактерий). При отсутствии эшерихий и сальмонелл глюкозопептонная среда остается прозрачной. При наличии признаков роста, делают высевы на висмутсульфит агар (для обнаружения сальмонелл) и MacConkey agar (для обнаружения эшерихий). Дальнейшая идентификация чистых культур проводится по схеме. Для количественного определения энтеробактерий материал (из холодильника) мерно засевают в различные объемы глюкозо-пептонной среды, инкубируют при +37°C 24 ч. При наличии роста делают высев на

МасConkey agar для получения изолированных колоний. По появлению типичных колоний, образованных оксидазоотрицательными грамотрицательными палочками, определяют наличие в материале энтеробактерий. Количество клеток энтеробактерий в исследуемой лекарственной форме определяют по специальной таблице.

Для обнаружения стафилококка и псевдомонад испытуемый образец в количестве 10 г (мл) вносят на специальную среду накопления и инкубируют при +35°C 24-48 ч. При наличии роста делают высевы на питательный агар с маннитом для обнаружения стафилококка и питательный агар с глицерином и хлоридом магния для обнаружения псевдомонад.

Обсемененность лекарственных форм микроорганизмами регламентируют государственные фармакопейные статьи (см. таблицу).

Таблица «Требования к микробиологической чистоте готовых лекарственных форм»

Лекарственные	Показатели				
формы	показатели				
		Pseudomonas aeruginosa,Staphylococ- cus aureus	Escherichia coli,Salmonella spp.	Другие энтеро- бактерии	
Средства для новорожденных (для внутреннего или наружного применения		СТЕРИЛЬНО.			
Средства для приема внутрь					
Детские (до 1 года) лекарственные средства	<50 (суммарно)	отсутствие	отсутствие		
Детские лекарственные средства	<500	<50	отсутствие		
Жидкие (растворы, сиропы, капли)	<500	<50	отсутствие	<100	
Тведые (таблетки, капсулы, гранулы и т.д.)	<1000	<100	отсутствие	<100	
Жидкие лекар. средства из сырья природного происхождения	<5000	<100	отсутствие	<100	
Средства для местно	го применения	ı			
Перкутанно, интравагинально, для ингаляций, в полость уха, носа.	<100 (суммарно)	отсутствие	отсутствие		
Ректально	<1000	<100	<100	отсутстви	

Контрольные вопросы

1. Как определить общее микробное число в образце лекарственного средства?

- 2. Какие дифференциально- диагностические среды используют для определения плесневых и дрожжевых грибов.
- **3.** Какие дифференциально- диагностические среды используют для определения стафилококка, синегнойной палочки, кишечной палочки и сальмонелл,

Лабораторная работа № 2

Тема: Исследование на стерильность инъекционных растворов, глазных капель и др. лекарственных средств.

Цель работы: освоить методику и получить навыки определения общего микробного числа и присутствие колиформных бактерий, в инъекционных растворах и глазных капелях до стерилизации.

Оборудование: стерильные флаконы, инъекционные растворы и глазные капели до стерилизации Общие положения

Отвор проб: аптечную посуду в количестве 3 штук одного объема отбирают в момент приготовления лекарственных форм. Ее доставляют в лабораторию в укупоренном виде, используя пробки и прокладки для отпуска лекарственных средств. Вспомогательный материал (пробки, прокладки и др., по 5 штук) отбирают фламбированным пинцетом в отдельные стерильные флаконы. Флаконы закрывают ватно-марлевыми пробками и бумажными колпачками.

Методика исследования: 1. Определение общего микробного числа — количества мезофильных аэробных и факультативно анаэробных бактерий в 10 см³ (10 мл) смывной жидкости. Три одинаковых флакона последовательно ополаскивают 10 мл стерильной водопроводной воды. Воду из флакона во флакон переливают над пламенем горелки, тщательно ополаскивая каждый флакон. Во флаконы с вспомогательным материалом также наливают по 10 мл стерильной водопроводной воды и тщательно ополаскивают. По 1 мл смывной жидкости вносят в две стерильные чашки Петри и заливают расплавленным и остуженным питательным агаром (метод глубинного посева). Инкубируют при +37°C 24 ч и еще 24 ч при комнатной температуре. Определяют среднее число колоний, выросших на поверхности и в глубине питательного агара и умножают на 10, что соответствует содержанию бактерий на поверхности трех одноименных флаконов или пяти предметах вспомогательного материала.

<u>2.</u> Определение колиформных бактерий. Оставшиеся 8 мл смывной жидкости засевают в 1 мл концентрированной глюкозо-пептонной среды и инкубируют при +37°C 24 часа. Дальнейший ход исследования описан в разделе «Санитарно-микробиологическое исследование дистиллированной воды».

Требования к микробиологической чистоте лабораторной посуды: общее микробное число не должно превышать 150 колонеобразующих единиц (КОЕ) в смыве с 3-х флаконов, с 5-ти пробок, с 5-ти прокладок; присутствие колиформных бактерий не допускаются.

Методика исследования: 1. Общее микробное число и присутствие колиформных бактерий определяют у инъекционных растворов и глазных капель до стерилизации (см. санитарномикробиологическое исследование воды).

2. Исследование на стерильность. Для контроля стерильности инъекционных растворов, глазных капель и др. лекарственных средств используют метод прямого посева или метод мембранной фильтрации. Материал засевают в асептическом боксе. Перед исследованием флаконы проверяют визуально на целостность укупорки и обрабатывают 3% раствором перекиси водорода или 70% спирта. В пред боксе сотрудники лаборатории тщательно моют руки с мылом, вытирают стерильным полотенцем, надевают стерильные халаты, шапочки, четырехслойные марлевые маски и бахилы. Перед началом работы в боксе руки обрабатывают 70% спиртом. Для работы используют стерильные инструменты. Перед посевом содержимое флаконов встряхивают, а горлышки флаконов обжигают над пламенем горелки.

Метод прямого посева: исследуемый материал засевают по 1 мл в 2 пробирки с 20 мл тиогликолевой среды и 1 пробирку с жидкой средой Сабуро. Тиогликолевую среду инкубируют при +30-35°C, среду Сабуро – при +20-25°C в течение 14 суток. При отсутствии помутнения питательной среды (обычно через 3-7 суток) делают пересев на те же питательные среды. Посевы просматривают в рассеянном свете ежедневно и по окончании периода инкубации. Наличие роста микроорганизмов в питательных средах оценивают визуально по появлению мутности, пленки, осадка и другим признакам. Выявленный рост подтверждают микроскопией мазков, окрашенных по Граму. Испытуемый препарат считают стерильным при отсутствии роста микроорганизмов. Метод мембранной фильтрации используют для определения стерильности лекарственных средств, обладающих антимикробным действием и лекарственных средств, разлитых объемом более 100 мл. Испытуемый раствор пропускают через один или несколько мембранных фильтров. Фильтр извлекают из установки, разрезают стерильными ножницами пополам, одну половинку помещают во флакон с тиогликолевой средой, другую – со средой Сабуро и инкубируют, как после прямого посева.

Требования к микробиологической чистоте инъекционных растворов и глазных капель: общее микробное число инъекционных растворов до стерилизации должно быть менее 30 КОЕ, глазных капель до 5-7 КОЕ, присутствие колиформных бактерий не допускается. Инъекционные растворы и глазные капли после стерилизации, а также глазные капли, приготовленные в асептических условиях на стерильной основе, должны быть стерильными.

Контрольные вопросы

Лабораторная работа № 3

Тема: Исследование воды (питьевой, для изготовления нестерильных лекарственных форм), и воды для инъекционных растворов, и глазных капель.

Цель работы: освоить методику и получить навыки исследований воды очищенной (для изготовления нестерильных лекарственных форм), а также воды для инъекционных растворов и глазных капель.

Оборудование: стерильные флаконы емкостью 500 мл с притертой резиновой, корковой или каучуковой пробкой, пробы воды очищенной, используемой для приготовления нестерильных лекарственных форм, пробы воды для приготовления инъекционных растворов и глазных капель,

Обшие положения

Среди объектов, подлежащих микробиологическому контролю в аптеках, важное место отводится исследованию воды. В соответствии с действующими нормативными документами контролю подлежит:

- вода централизованного водоснабжения (вода питьевая),
- вода очищенная (для изготовления нестерильных лекарственных форм),
- вода для инъекционных растворов и глазных капель.

Отбор проб: для отбора проб питьевой воды используют стерильные флаконы емкостью 500 мл с притертой резиновой, корковой или каучуковой пробкой. Предварительно проводят обжигание кранов пламенем горящего тампона, смоченного спиртом, и спуск воды в течение 10-15 минут при полностью открытом кране. Бумажный колпачок с пробкой снимают с флакона непосредственно перед ее заполнением, не касаясь руками горлышка флакона и пробки. Пробы воды очищенной, используемой для приготовления нестерильных лекарственных форм отбирают в количестве 500 мл в стерильные бутылки, закрытые ватными пробками и бумажными колпачками. Пробы отбирают из бюретки, у которой предварительно обжигают кончик с помощью ватного тампона смоченного спиртом.

Пробы воды для приготовления инъекционных растворов и глазных капель, отбирают в стерильные флаконы в количестве 20 мл непосредственно из баллона сразу же после перегонки или из сосудов, в которых вода стерилизуется.

Методика исследования: 1. Определение общего микробного числа (ОМЧ) – количества мезофильных аэробных и факультативно анаэробных бактерий в 1 см³ (1мл) – проводят для всех видов воды. Исследуемую воду вносят по 1 мл в две стерильные чашки Петри и заливают расплавленным и остуженным питательным агаром (метод глубинного посева). Инкубируют в термостате при 37°С 24 часа, после чего при комнатной температуре еще 24 часа. Подсчитывают на 2-х чашках число выросших колоний (на поверхности и в глубине питательного агара) и рассчитывают среднее арифметическое значение.

2. Для выявления плесневых и дрожжевых грибов исследуемую воду засевают по 0,5 мл на среду Сабуро и инкубируют при комнатной температуре в течение 3-4 суток. Подсчитывают число выросших колоний и также рассчитывают среднее арифметическое.

Таблица «Требования к микробиологической чистоте воды»

Наименование объекта	Требования к	Нормативный документ
контроля	микробиологической чистоте	пормативный документ

Вода питьевая	общие колиформные бактерии, термотолерантные колиформные бактерии, колифаги должны отсутствовать в 100 мл воды; микробное число — не более 50 микроорганизмов в 1 мл; споры сульфитредуцирующих	СанПиН 2.1.4.1074-01
	клостридий должны отсутствовать в 20 мл воды.	
Вода очищенная	Допускается не более 100	Фармакопейная статья (ФС)
	микроорганизмов в 1 мл воды при отсутствии	ФС 42-2619 - 97
	Enterobacteriaceae,	
	P.aeruginosa, S.aureus.	
Вода для инъекционных растворов	Апирогенность (не более 15 микроорганизмов/мл).	ФС 42-2620 - 97

Результат (ОМЧ) вычисляют путем суммирования среднего арифметического числа бактерий, дрожжевых и плесневых грибов.

3. Присутствие колиформных бактерий определяют также в воде всех видов воды. Колиформные бактерии — это грамотрицательные аспорогенные палочки, не обладающие оксидазной активностью и ферментирующие лактозу с образованием кислоты и газа при температуре 37°C в течение 24-48 часов (или ферментирующие глюкозу с образованием кислоты и газа при температуре 37°C в течение 24 часов).

Для определения колиформных бактерий в питьевой воде и воде очищенной используют метод мембранных фильтров. Исследуемую воду по 100 мл пропускают через 3 бактериальных фильтра из нитроцеллюлозы, которые затем помещают на среду MacConkey и инкубируют при температуре 37°C 24 часа; подсчитывают количество выросших лактозоположительных колоний (красных с металлическим блеском).

Для определения колиформных бактерий в дистиллированной воде, используемой для приготовления инъекционных растворов и глазных капель, по 1 мл исследуемого образца засевают в 9 мл глюкозо-пептонной среды, среды Кесслера или Кода. Посевы инкубируют при 37°С 18-24 часов с дальнейшими высевами на среду MacConkey (секторами) и инкубацией при 37°С 24 часа. Из выросших лактозоположительных колоний делают мазки, окрашивают по Граму и микроскопируют. При обнаружении Гр— палочек колонии отсевают на глюкозо-пептонную среду с поплавком, инкубируют при 37°С 24 часа. При наличии колиформных бактерий изменяется цвет среды и в поплавке скапливается газ.

По эпидемическим показаниям в очищенной воде и дистиллированной воде определяют присутствие Pseudomonas aeruginosa, Staphylococcus aureus.

Контрольные вопросы

- 1. Как проводится отбор проб питьевой воды, воды очищенной, используемой для приготовления нестерильных лекарственных форм, воды для приготовления инъекционных растворов и глазных капель.?
- 2. Какие требования предъявляются к микробиологической частоте воды (вода питьевая, вода очищенная, вода для инъекционных растворов)?

Контрольные работы по предмету «Методы микробиологического контроля Л.С. Вариант №1

- 1. Микрофлора лекарственных растений. Методы контроля микробной загрязненности растительного лекарственного сырья.
- 2. Какие бактерии наиболее часто контаминируют лекарственные препараты? Какие инфекционные заболевания возникают в результате использования контаминированных Л.С. От чего зависит возникновение, развитие и исход заболевания
- 3. Каким микробиологическим исследованиям подвергаются нестерильные лекарственные формы? По каким показателям определяют микробиологическую чистоту и каковы ее нормы?
- 4. Санитарно-бактериологическое исследование воздуха закрытых помещений (аптек). Методы определения показателей санитарного состояния воздуха. Допустимые нормы в 1 м³ воздуха.

Вариант №2

- 1. Фитопатогенные микроорганизмы- возбудители инфекционных заболеваний. Как происходит передача и распространение возбудителей по растениям
- 2. Как ведет себя Staphyloccocus aureus при попадании на поврежденную кожу, слизистые, при ингаляционном введении, при пероральном введении, при попадании в кровяное русло? Чем объясняется высокая степень патогенности S aureus.
- 3. Нормативы предельно допустимого содержания непатогенных микроорганизмов плекарственных формах
- 4. Микробная деконтаминация объектов внешней среды. Методы стерилизация (механическая, физическая, химическая, лучевая) В каких случаях используют различные виды стерилизации.

Вариант №3

- 1. Основные роды бактерий возбудителей инфекционных заболеваний. Признаки микробной порчи РЛС. Мероприятия, проводимые для борьбы с фитопатогенными микроорганизмами.
- 2. Какие воспалительные процессы различной локализации и степени тяжести вызывает S aureus? Какие еще микроорганизмы представляют не меньшую опасность при нахождении их в различных лекарственных формах.
- 3. Пути повышения микробной чистоты в НЛС. Нормы микробов в нестерильных лекарственных формах
- 4. Дезинфекция: определения понятия, цели, типы, способы проведения, оценка качества проведения.

Вариант №4

- 1. Внешние проявления микробной порчи ЛРС, что происходит при этом с сырьем? Определение микробной обсемененности ЛРС
- 2. Кто относится к стерильным лекарственным формам и как происходит исследование стерильных лекарственных форм? В каком случае используют метод прямого посева? А в каом случае используют метод мембранных фильтров?
- 3. Асептические лекарственные формы (без стерилизации)Требования к помещению, аптечной посуде, , персоналу, допустимые нормы в асептических лекарственных формах.
- 4. Дезинфектанты и антисептики. Требования предъявляемые к химическим дезинфектантам и антисептикам Основные группы дезинфектантов и антисептиков. Механизм и мишени действия антисептиков и дезинфектантов.

Вариант №5

- 1. От чего зависит состав микроорганизмов вызывающих порчу ЛРС, и какие микроорганизмы преобладают.
- 2. Определение пирогенности. Бактериальные пирогенны, химическая природа, свойства. Методы устранения пирогенности. Причины пирогенности.
- 3. Какие бактерии наиболее часто контаминируют лекарственные препараты? Какие инфекционные заболевания возникают в результате использования контаминированных Л.С. От чего зависит возникновение, развитие и исход заболевания
- 4. Консерванты и их использование в фармацевтическом производстве: характеристика, назначение, примеры, требования к консервантам

Вариант №6

- 1. Объекты санитарно- бактериологического обследования в аптеках.
- 2. НЛС в каком случае происходит контаминация НЛС, какие микроорганизмы чаще всего встречаются в лекарственных препаратах. , Назовите признаки микробной порчи настоев, отваров, таблеток, порошков, мазей.
- 3. Определение микрофлоры в лекарственных формах. Качественное определение условнопатогенных и патогенных микроорганизмов
- 4. Противомикробные мероприятия. Асептика. Понятие о противомикробном режиме. Антисептика: определение понятия, типы категории, способы проведения. Антисептические средства: классификация, механизм действия, побочное действие.

Вариант №7

- 1. Как ведет себя Staphyloccocus aureus при попадании на поврежденную кожу, слизистые, при ингаляционном введении, при пероральном введении, при попадании в кровяное русло? Чем объясняется высокая степень патогенности S aureus.
- 2. Каким микробиологическим исследованиям подвергаются нестерильные лекарственные формы? По каким показателям определяют микробиологическую чистоту и каковы ее нормы?
- 3. Санитарно-бактериологическое исследование воздуха закрытых помещений (аптек). Методы определения показателей санитарного состояния воздуха Допустимые нормы в 1м³ воздуха.

4. Химиотерапия: определения понятия, цели, свойства химиопрепаратов.

Химиотерапевтические препараты. Антибиотики их классификация, способы получения антибиотиков. Побочное действие антибиотиков и меры профилактики.

Тестовые задания

1. Перечислите представителей эпифитной микрофлоры:

- a) Erwinia herbicola;
- б) Pseudomonas fluorescens;
- в) Bacillus antracis;
- г) Bacillus megaterium.
- 2.Источниками микробного загрязнения лекарственных средств могут быть:
- в) воздух;
- г) лекарственное сырье.

3.ОМЧ для лекарственных препаратов местного применения не должно превышать:

- a) 50:
- б) 100;
- в) 150;
- г) 200.

4.К фитопатогенным микроорганизмам относятся следующие виды:

- a) Erwinia amylovora;
- б) Escherichia coli;
- B) Pseudomonas syringae;
- г) Xanthomonas campestris

5.К бактериозам относятся следующие патологические процессы:

- а) некроз тканей растения;
- б) развитие опухолей на растениях;
- в) возникновение гнилей

различной локализации;

г) увядание растения.

6.При санитарно-микробиологическом исследовании аптечного оборудования и лекарственных средств определяют:

- а) бактерии семейства Enterobacteriaceae;
- б) Staphylococcus aureus;
- B) Pseudomonas aeruginosa;
- г) дрожжи;
- д) дрожжеподобные и плесневые грибы.

7. Объектами микробиологического контроля в аптеках являются:

- а) промежуточные и готовые
- продукты и материалы;
- б) руки и санитарная одежда

персонала;

- в) воздушная среда;
- г) поверхности помещений
- и оборудования;
- д) вода водопроводная.

8.При санитарно-микробиологическом исследовании аптечного оборудования и лекарственных средств определяют:

- a) бактерии семейства Enterobacteriaceae:
- б) Staphylococcus aureus;
- B) Pseudomonas aeruginosa;
- г) дрожжи;

9.Забор воздуха аптек при санитарно-микробиологическом исследовании проводится в:

- а) зале обслуживания;
- б) асептическом блоке;
- в) комнате приема пищи;

- г) стерилизационной.
- 10.При исследовании воздуха на содержание S.aureus:
- а) для посева используют ЖСА;
- б) идентифицируют микроорганизм по наличию подвижности;
- в) идентифицируют микроорганизм по способности ферментировать маннит в аэробных и анаэробных условиях;
- г) для посева используют среду Китта-Тароцци.
- 11.Для атмосферного воздуха характерно присутствие следующих микроорганизмов:
- а) зеленящих и гемолитических стрептококков;
- б) золотистого стафилококка;
- в) пигментных форм;
- г) плесневых грибков;
- д) почвенных спороносных

аммонифицирующих и гнилостных бактерий.

12.К бактериологическим показателям, подлежащим учету при оценке качества питьевой воды, относятся:

- а) общая обсемененность;
- б) коли-индекс;
- в) наличие фекального

загрязнения;

- г) золотистый стафилококк;
- д) энтерококк.

13.К основным методам дезинфекции относятся:

- 1) автоклавирование;
- 2) тиндализация;
- 3) кипячение:
- 4) фламбирование;
- 5) пастеризация;

14.К основным методам стерилизации относятся:

- 1) автоклавирование;
- 2) тиндализация;
- 3) кипячение:
- 4) обработка микробицидными веществами;
- 5) пастеризация;
- 6) обработка в сушильно-стерилизационном шкафу
- (печи Пастера).
- а) верно 1, 2, 6;
- б) верно 1, 3, 4;
- в) верно 3, 4, 5;
- г) верно 4, 5, 6.

15. Санитарно-показательными микроорганизмами при исследовании воздуха в закрытых помещениях являются:

- а) зеленящие и гемолитические стрептококки;
- б) золотистый стафилококк;
- в) клостридии;
- г) синегнойная палочка;
- д) энтерококки

16. Укажите определения, отвечающие микробному числу:

- а) характеризует общую
- обсемененность объекта;
- б) характеризует наличие
- санитарно-показательных
- микроорганизмов;
- в) это общее количество микробов, содержащихся в единице объема или массы исследуемого объекта;
- г) это количество санитарно-показательных микроорганизмов, содержащихся в единице объема или массы исследуемого объект

17.Принципы оценки гигиенического состояния объектов внешней среды по бактериологическим показателям заключаются:

а) в определении микробного

числа;

б) в определении индекса

санитарно-показательных

- в) в выборе тестов в зависимости от поставленных задач;
- г) в индикации патогенности

микрофлоры.

18. Объектами изучения санитарной микробиологии не являются:

- а) вода;
- б) почва;
- в) воздух;
- г) пищевые продукты;
- д) испражнения.

19. Основными признаками, которыми должны обладать санитарно-показательные микроорганизмы, являются:

- 1) способность к росту при 20 °C;
- 2) постоянство обнаружения

в исследуемых субстратах;

- 3) достаточная численность;
- 4) способность к росту на сложных питательных средах;
- 5) способность к выживанию,

превосходящая таковую

у патогенных бактерий.

- а) верно 1, 3, 2:
- б) верно 2, 3, 4, 5;
- в) верно 2, 3, 5;
- 2г) верно 1, 4, 5.

20. Укажите определения, отвечающие микробному числу:

- а) характеризует общую
- обсемененность объекта:
- б) характеризует наличие

санитарно-показательных

микроорганизмов;

- в) это общее количество микробов, содержащихся в единице объема или массы исследуемого объекта;
- г) это количество санитарно-показательных микроорганизмов, содержащихся в единице объема или массы исследуемого объекта

21. Показателями бактериального загрязнения, которые используются для оценки эпидопасности почв населенных пунктов, являются:

- а) кишечные палочки;
- б) энтерококки;
- в) патогенные энтеробактерии;
- г) золотистый стафилококк;
- д) энтеровирусы.

22. Для оценки бактериального загрязнения почвы санитарно-показательными микроорганизмами служат:

- а) БГКП;
- б) гемолитические стрептококки;
- в) C.perfringens;
- г) термофильные бактерии;
- д) стафилококки;
- е) нитрифицирующие бактерии.

23. Для оценки бактериального загрязнения воздуха санитарно-показательными микроорганизмами служат:

а) БГКП;

- б) гемолитические стрептококки;
- в) клостридии;
- г) термофильные бактерии;
- д) золотистый стафилококк;
- е) нитрифицирующие бактерии.
- 24. Санитарно-показательными микроорганизмами при исследовании воздуха в закрытых помещениях являются:
- а) зеленящие и гемолитические стрептококки;
- б) золотистый стафилококк;
- в) клостридии;
- г) синегнойная палочка;
- д) энтерококки.

вопросы к экзамену по предмету:

«Методы микробиологического контроля лекарственного сырья»

- 1. Виды лекарственных растений, их характеристика. Химический состав растительного сырья.
- 2. Механизмы резистентности лекарственных растений
- 3. Микрофлора лекарственных растений (эпифитная, ризосферная)
- 4. Фитопатогенные микроорганизмы-возбудители инфекционных заболеваний. Бактериозы (по локализации процесса и по механизму поражения). Основные роды бактерий возбудителей инфекционных заболеваний.
- 5. Болезни лекарственных растений, вызываемые вирусам и грибами.
- 6. Мероприятия, проводимые для борьбы с фитопатогенными микроорганизмами.
- 7. Виды болезней растений (бактериальные, грибковые, вирусные). Пути передачи. Механизмы защиты растений.
- 8. Факторы вирулентности фитопатогенных микроорганизмов. Продукция токсинов и ферментов и их роль в патогенезе
- 9. Микрофлора растительного лекарственного сырья(РЛС). Внешние проявления микробной порчи РЛС. Методы контроля микробной чистоты лекарственного растительного сырья 10.Микрофлора готовых лекарственных форм. Источники и причины микробной загрязненности лекарственных препаратов
- 11. Методы определения микробной загрязненности готовых лекарственных препаратов. Исследование стерильных лекарственных средств.
- 12. Причина пирогенности лекарственных препаратов. Бактериальные пирогены, химическая природа свойства.
- 13. Нестерильные лекарственные средства. Признаки микробной порчи в жидких, мягких, в твердых лекарственных формах. Микробный состав в готовых лекарственных формах.
- 14. Микробиологические исследования нестерильных лекарственных форм (испытания на микробиологическую чистоту)
- 15. Нормы микробов в нестерильных лекарственных формах. Пути повышения микробной чистоты нестерильных лекарственных средств.
- 16. Асептические лекарственные формы. Асептика (требование к помещению, к аптечной посуде, к персоналу.

- 17. Определение микробиологической чистоты в нестерильных лекарственных формах. Качественное определение условно - патогенных и патогенных микроорганизмов (определение патогенных стафилококков, выявление синегнойной палочки, определение бактерий сем. Enterobacteriaceae
- 18. Фармацевтическая микробиология. История развития микробной деконтаминации лекарственных препаратов. Первые официальные требования правил GMP.
- 19. Микробная контаминация лекарственных препаратов. Инфекционные заболевания, возникающие в результате использования контаминированных лекарственных средств.
- 20. Какие патогенные микробы представляют наибольшую опасность при контаминации лекарственных средств
- 21. Какими факторами определяется высокая степень патогенности Staphylococcus aureus?
- 22. Какие патологические изменения в организме человека вызывает синегнойная палочка (Pseudomonas aeruginosa) Путь заражения и факторы передачи
- 23. Факторы риска развития внутрибольничной, синегнойной инфекции.
- 24. Антимикробные мероприятия в профилактике и лечении инфекционных заболеваний. Цели и методы антимикробных мероприятий
- 25. Микробная деконтаминация объектов внешней среды Стерилизация, пастеризация. Цель и этапы стерилизации..
- 26. Дезинфекция: определение, способы проведения. Основные группы дезинфектантов и их механизм действия Дезинфицирующие вещества, используемые в медицинской практике.
- 27. Асептика, антисептика. Основные группы дезинфицирующих и антисептических веществ, Механизм их антибактериального действия (деструктивный, окислительный, мембраноатакующий)
- 28. Консерванты. Требование предъявляемые к консервантам, их ассортимент применяемый в фармацевтической промышленности.
- 29. Классификация консервантов (неорганические, металлорганические, органические соединения), их применение при изготовлении лекарственных средств
- 30.Химиотерапия, история возникновения. Химиотерапевтические препараты их свойства.
 Химиотерапевтический индекс. Требования, предъявляемые к химиотерапевтическим препаратам
- 31. Классификация химиотерапевтических препаратов (по направленности действия, по химическому строению).
- 32.История развития антибиотиков. Требования к антибиотикам, существенно ограничивающих их терапевтическое применение
- 33. Классификация антибиотиков (по происхождению, по спектру действия, по механизму действия) Способы получения антибиотиков.
- 34. Осложнения со стороны макроорганизма. Побочные действия антибиотиков на организм человека, и меры профилактики.

- 35.Осложнения со стороны микроорганизмов. Лекарственная устойчивость микроорганизмов и механизм развития устойчивости микробов к антибиотикам. Методы борьбы с лекарственной устойчивостью
- 36. Нормальная микрофлора организма человека. Микрофлора кожи, верхних дыхательных путей, Роль микрофлоры кишечника и толстой кишки.
- 37.Значение микрофлоры человека.
- 38. Дисбактериоз причины, возникновения, последствия.
- 39.Препараты, используемые для лечения и профилактики дисбактериоза кишечника.
- 40. Разнообразие препаратов и их особенности. Преимущество бактериофагов перед антибиотиками
- 41. Цель, задачи и методы санитарной микробиологии.
- 42.Объекты санитарно- бактериологического обследования в аптеках. Критерии и показатели оценки санитарного состояния воздуха закрытых помещений
- 43. Критерии оценки микробной обсемененности аптечной посуды, рабочих столов, рук персонала.
- 44. Критерии и показатели оценки санитарного состояния воды. Методы определения и оценка санитарного состояния воды.
- 45. Вода очищенная, вода дистиллированная, вода для инъекций- их санитарномикробиологические характеристики. нормативы.