Бондарев Юрий Платонович, менеджер ООО «Сельхозполимер»; e-mail: platon946@mail.ru;

Зубкова Татьяна Александровна, доктор биологических наук, старший научный сотрудник лаборатории физики и технологии почв факультета почвоведения МГУ имени М.В. Ломоносова; e-mail: dusy.taz@mail.ru;

Ашинов Юнус Нухович, доктор биологических наук, заведующий кафедрой землеустройства $\Phi \Gamma EOV BO$ «Майкопский государственный технологический университет»; e-mail: unus.n@mail.ru;

Мамсиров Нурбий Ильясович, доктор сельскохозяйственных наук, заведующий кафедрой технологии производства сельскохозяйственной продукции ФГБОУ ВО «Майкопский государственный технологический университет»; e-mail: nur.urup@mail.ru

ВЛИЯНИЕ ПРЕДПОСЕВНОЙ ОБРАБОТКИ ЭВКАЛИПТОМ И ЧИСТОТЕЛОМ НА ПРОРАСТАНИЕ СЕМЯН СВЕКЛЫ, ПШЕНИЦЫ И КУКУРУЗЫ

(рецензирована)

Регуляторы роста растительного происхождения относятся к наиболее безопасным и проявляющим стимулирующее действие на широкий спектр растений. Научная работа посвящена исследованию влияния предпосевной обработки эвкалиптом (Folium Eucalypti) и чистотелом (Herba Chelidonii) на развитие проростков пшеницы, свеклы и кукурузы. Показано повышение всхожести семян на 2-12 %. На рост корней эвкалипт проявил максимальный эффект: длина корней увеличилась на 3,7% для пшеницы, 15% — свеклы и 80% для кукурузы по сравнению с контролем.

Ключевые слова: стимуляторы роста, эвкалипт, чистотел, длина корней и стеблей, всхожесть семян, пшеница, свекла, кукуруза.

Bondarev Yuri Platonovich, a manager of "Selzhopolymer LLC"; e-mail: platon946@mail.ru;

Zubkova Tatyana Alexandrovna, Doctor of Biological Sciences, a senior researcher of the Laboratory of Physics and Technology of Soils of the Faculty of Soil Science, Moscow State University named after Lomonosov; e-mail: dusy.taz@mail.ru;

Ashinov Yunus Nukhovich, Doctor of Biological Sciences, head of the Department of Land Management of the State Educational Establishment of Higher Professional Education of the Maykop State Technological University; e-mail: unus.n@mail.ru;

Mamsirov Nurbiy Ilyasovich, Doctor of Agricultural Sciences, head of the Department of Agricultural Production Technology, FSBEI HE "Maikop State Technological University"; e-mail: nur.urup@mail.ru

INFLUENCE OF PRE- SOWING TREATMENT WITH EUCALYPTUS AND CELANDINE ON BEET, WHEAT AND CORN SEED SPROUTING

(reviewed)

Plant growth regulators are among the safest and show a stimulating effect on a wide range of plants. The scientific work is devoted to the study of the influence of pre-sowing treatment with eucalyptus (Folium Eucalypti) and celandine (Herba Chelidonii) on the development of wheat, beet and corn seedlings. Seed germination has increased by 2-12%. Eucalyptus showed the maximum effect on root growth: the root length increased by 3.7% for wheat, 15% for beets and 80% for corn in comparison with the control.

Key words: growth stimulants, eucalyptus, celandine, root and stem length, seed germination, wheat, beet, maize.

Введение. Современные биотехнологии, применяемые в растениеводстве для повышения биопотенциала продуктивности растений, должны соответствовать экологической и генетической безопасности. При поиске и применении новых препаратов необходимо учитывать эти требования. В последнее время намечается тенденция поиска регуляторов роста растительного происхождения, как наиболее безопасных и проявляющих стимулирующее действие на широком спектре растений [1, 2, 3, 4], при этом повышающих устойчивость растений к заболеваниям [5].

Цель представленной работы – выявить влияние предпосевной обработки мелкими фракциями лекарственных растений эвкалипта (Folium Eucalypti) и чистотела (Herba Chelidonii) на развитие проростков пшеницы, свеклы и кукурузы. Мелкие фракции лекарственных растений – это отходы производства, которые при положительном их влиянии могут быть использованы в качестве основы оболочки при капсулировании (инкрустации) семян. Указанные лекарственные растения содержат различные биологически активные вещества: алкалоиды, флаваноиды в чистотеле, эфирные масла в листьях эвкалипта. Это позволяет предположить их возможное стимулирующее воздействие на прорастание семян и ингибирующее – на развитие микрофлоры.

Методика исследования. Использовали метод рулонной культуры для исключения влияния побочных параметров на испытуемые проростки. Существует несколько модификаций метода рулонной культуры [6], поэтому приводится описание используемого метода.

Для проращивания семян методом рулонной культуры использовали листы фильтровальной бумаги (ГОСТ 1206-76С с массой 1 м² 74,3 г) размером 40*60 см. Карандашом отмечали середину листа. На эту линию равномерно помещали половину навески порошка эвкалипта или чистотела, рассчитанную для данной культуры. Затем через 1 см раскладывали 50 семян, ориентированных в одном направлении, отступив от обоих краев листа по 5 см. На разложенные таким способом семена припудривали вторую часть навески препарата и покрывали полоской фильтровальной бумаги размером 10*12*60 см, которую предварительно смачивали дистиллированной водой. Фильтровальную бумагу с разложенными семенами сворачивали в рыхлый рулон, в середину которого помещали стеклянную палочку для сохранения вертикального положения рулона после намокания. Затем рулон помещали в широкий стакан, в

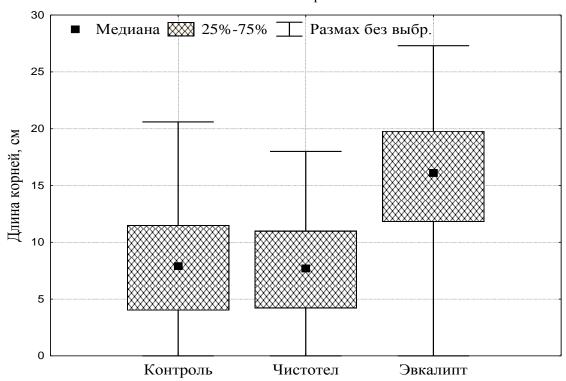
который наливали 200 мл дистиллированной воды. На стакане отмечали маркером уровень воды. В течение всего эксперимента следили за постоянным уровнем воды в сосуде. Навеску препарата рассчитывали на 50 семян, определяли исходя из веса 50 семян в 10-кратной повторности. для расчета навески препарата использовали среднее значение.

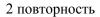
Для сахарной свеклы и пшеницы использовали 1/3 часть навески эвкалипта и чистотела от среднего веса 50 семян, что составляло соответственно 0,18, 0,93 г. Для более тяжелых семян кукурузы навеска препаратов равнялась 1/5 части от веса 50 семян и составляла 3,66 грамма. Одна повторность с семенами кукурузы была обработана навеской чистотела равной 1/10 части от веса 50 семян и составляла 1,83 г. Измерение длины корней и стеблей каждого проростка (50 измерений) производили на 12-й день произрастания. Для большей информативности в это же время взвешивали корни и стебли каждой повторности в различных вариантах.

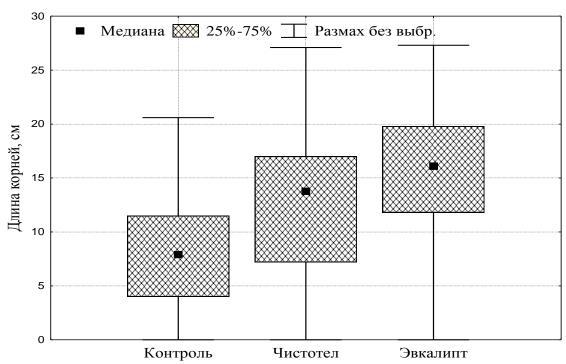
Исследования проводили в 2-3-х кратной повторности.

Полученные результаты обрабатывали статистически, используя программу "Statistica-6".

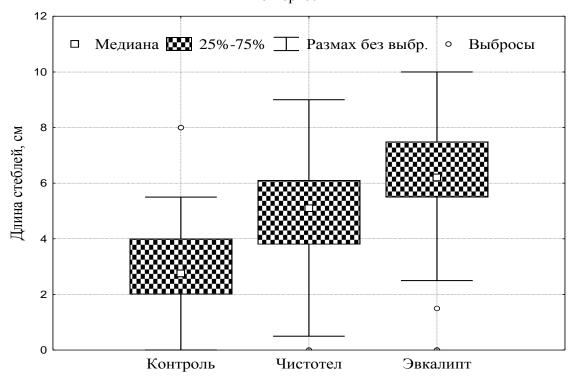
Результаты исследований. Используемые семена пшеницы, сахарной свеклы и кукурузы характеризуются достаточно высокой всхожестью (табл. 1). Причем в контрольных вариантах всхожесть незначительно ниже по сравнению с вариантами, проращиваемыми с эвкалиптом и чистотелом.

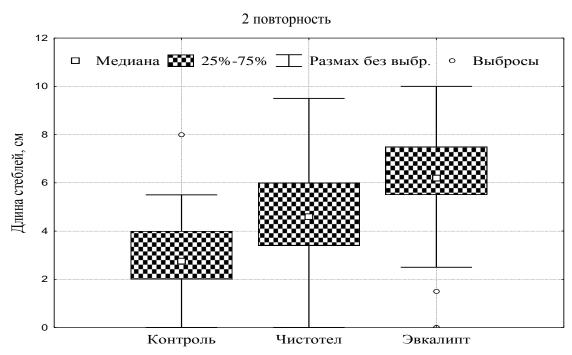

Таблица 1 - Влияние эвкалипта и чистотела на проростки пшеницы, свеклы и кукурузы.

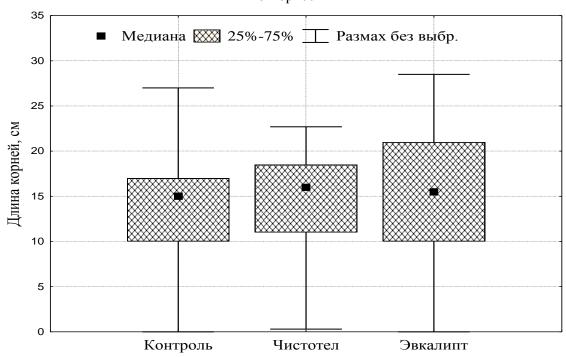

Параметр	Контроль			Чистотел			Эвкалипт				
	Повторность			Повторность			Повторность				
	1	2	3	1	2	3	1	2	3		
Пшеница											
Всхожесть, %	96	92	94	98	98	96	96	96	98		
Вес корней, г	2,67	3,08	2,70	2,45	3,35	2,85	3,66	3,06	2,69		
Вес стеблей, г	3,16	3,66	5,32	3,18	4,51	4,47	3,85	4,41	4,49		
Вес одного корня, г	0,05	0,06	0,05	0,05	0,06	0,05	0,07	0,06	0,05		
	6	7	7	0	8	9	6	4	5		
Вес одного стебля, г	0,06	0,08	0,11	0,06	0,09	0,09	0,08	0,09	0,09		
	6	0	6	5	2	3	0	2	2		
Вес проростка, г	0,12	0,14	0,17	0,11	0,16	0,15	0,15	0,15	0,15		
	2	7	3	5	0	2	6	6	7		
Свекла											
Всхожесть, %	76	86	90	90	86	94	96	94	92		
Вес корней, г	0,57	0,73	0,64	0,37	0,48	0,64	0,72	0,74	0,61		
	7	5	5	7	5	6	2	2	2		
Вес стеблей, г	0,98	1,23	1,23	0,97	1,16	1,44	0,86	1,03	0,89		
Вес одного корня, г	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01		

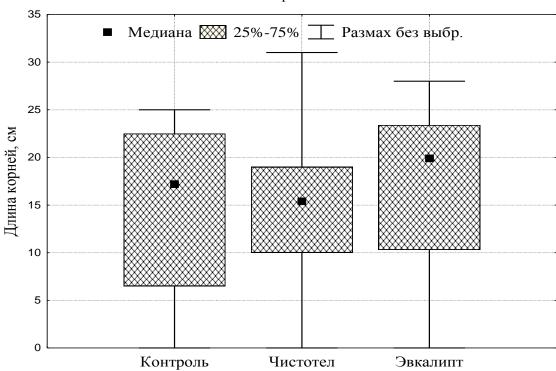

	5	7	4	8	1	4	5	6	3	
Вес одного стебля, г	0,02	0,02	0,02	0,02	0,02	0,03	0,01	0,02	0,01	
	6	9	7	2	7	1	8	6	9	
Вес проростка, г	0,04	0,04	0,04	0,03	0,03	0,04	0,03	0,04	0,03	
	1	6	1	0	8	5	3	2	2	
Кукуруза										
Всхожесть, %	94			98	96		96			
Вес корней, г	8,05			7,89	8,19		14,9			
				1,09			9			
Вес стеблей, г	6,39			10,1	9,49		11,7			
				4			0			
Вес одного корня, г	0,17			0,16	0,17		0,31			
Вес одного стебля, г	0,14			0,20	0,20		0,24			
Вес проростка, г	0,31			0,36	0,37		0,55			

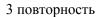
Так, средняя всхожесть пшеницы в вариантах с эвкалиптом равна 96,6%, с чистотелом 97,3% и контролем 94%; для сахарной свеклы в соответствующих вариантах 94%, 90% и 84%; для кукурузы – 96%, 97% и 94% соответственно. Таким образом, увеличение всхожести семян, обработанных мелкими фракциями чисто-тела, составляют 3,5% для пшеницы, 7,1% для свеклы и 3,2% для кукурузы, а с эвкалиптом – 2,9; 11,9 и 2,1% соответственно. По весу проростков наблюдается аналогичная картина (табл. 1). На развитие проростков кукурузы влияние предпосевной обработки эвкалиптом проявляется в максимальной степени – 77,3% прироста по сравнению с контролем. В опытах с чистотелом масса проростков семян кукурузы увеличилась лишь на 19,2 %. Стимулирующий эффект на развитие проростков семян пшеницы наблюдается и при обработке их эвкалиптом (4%), при этом влияние проявляется в большей степени на рост корней (8,2 %). Однако обработка семян свеклы чистотелом и эвкалиптом не дала положительного эффекта.

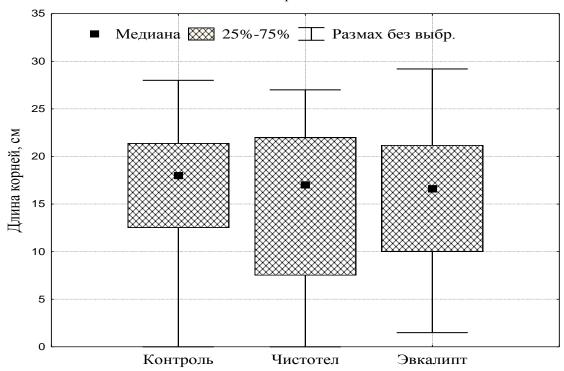

Влияние предпосевной обработки эвкалиптом и чистотелом на морфометрические показатели проростков семян кукурузы, свеклы и пшеницы. На рисунках 1-6 представлены результаты морфометрических измерений проростков исследуемых культур. Обработка семян кукурузы чистотелом и эвкалиптом выявила существенное влияние эвкалипта на рост кукурузы: длина корней увеличилась на 81%, а стеблей на 110% (рис. 1, 2). Обработка чистотелом имела значительный эффект только на развитие стеблей проростков – 69% (рис. 2).

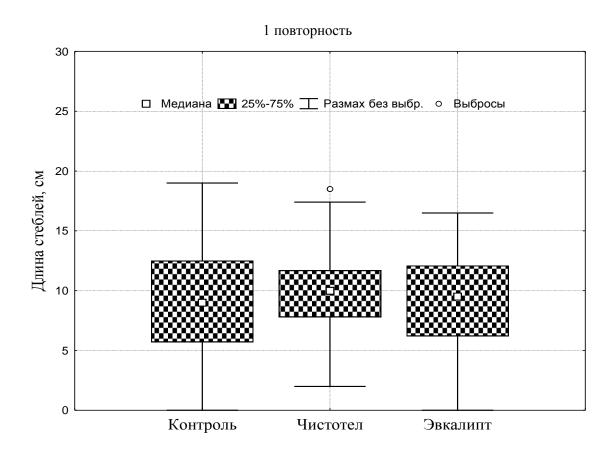



Рис. 1. Диаграмма размаха длины корней кукурузы после предпосевной обработки чистотелом и эвкалиптом




Рис. 2. Диаграмма размаха длины стеблей кукурузы после предпосевной обработки чистотелом и эвкалиптом


На рост проростков пшеницы выявлено незначительное влияние эвкалипта (рис. 3, 4): длина корней выроста в среднем на 9,7%, а длина стеблей в среднем на 6,7% (с разбросом от 1,1 до 12,3%) по сравнению с контролем.



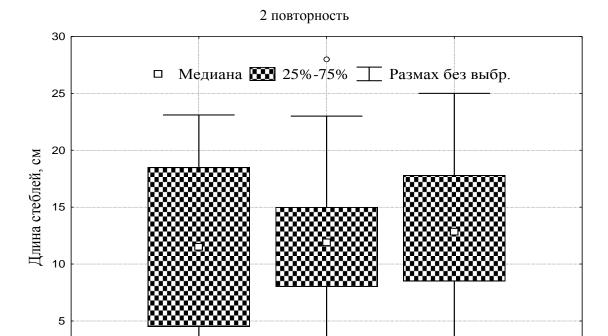
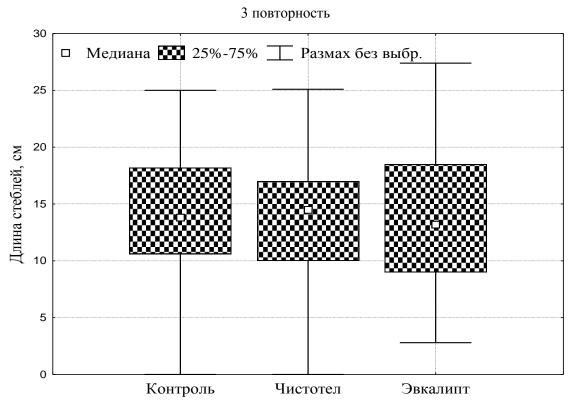


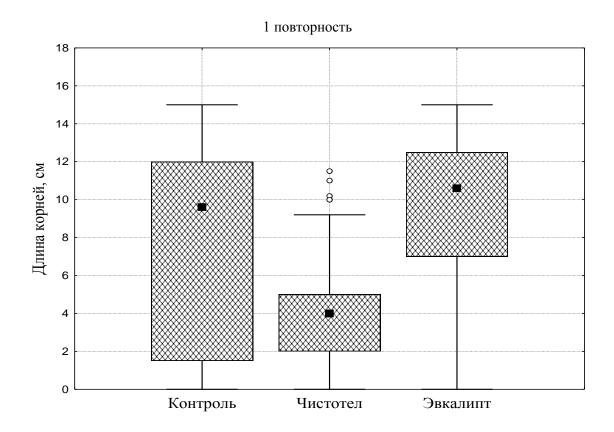
Рис. 3. Диаграмма размаха длины корней пшеницы после предпосевной обработки чистотелом и эвкалиптом

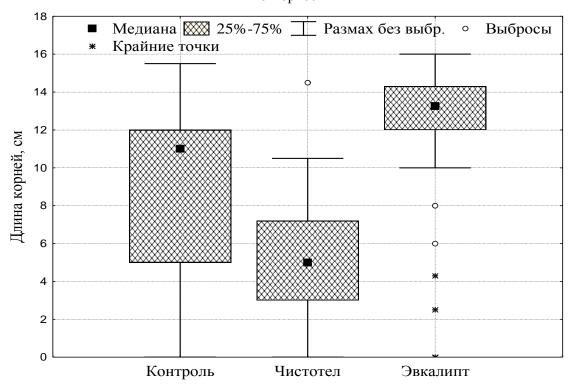


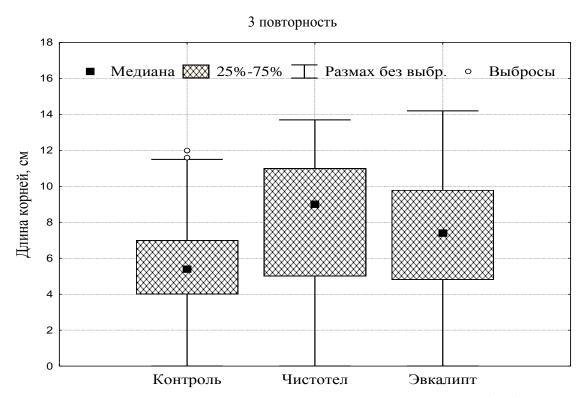
Чистотел

Эвкалипт

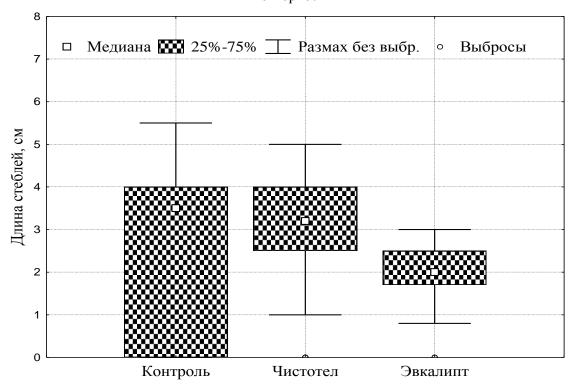
Контроль

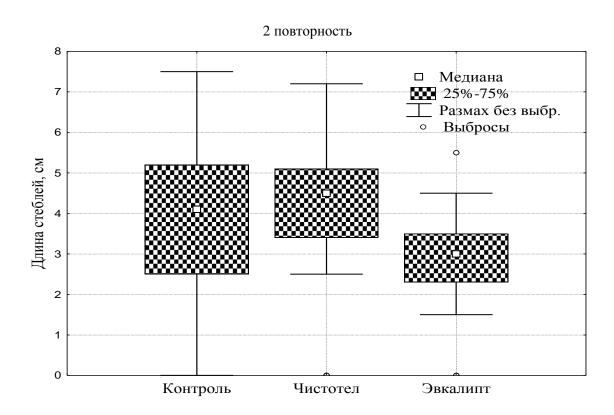

Рис. 4. Диаграмма размаха длины стеблей пшеницы после предпосевной обработки чистотелом и эвкалиптом


Для свеклы морфометрические показатели свидетельствуют о максимальном влиянии эвкалипта на корни проростков: длина корней возросла на 25,7% и 22,2% в 2-х


повторностях по сравнению с контролем (рис. 5). Обработка чистотелом привела к ингибирующему влиянию на развитие корней. В то же время на размерах стеблей проростков свеклы такого влияния не отмечено, напротив, наблюдали увеличение длины стеблей на 6,8 и 50% (рис. 6).

Сравнивая предпосевную обработку семян исследуемых культур эвкалиптом на размеры корней проростков можно заключить следующее: длина корней пшеницы выросла в среднем на 3,7%, свеклы – на 15% и кукурузы – на 80% по сравнению с контролем. Обработка чистотелом положительно повлияла только на развитие корней проростков кукурузы (18 %). Для корней проростков пшеницы и свеклы обработка чистотелом оказала угнетающее влияние: длина корней свеклы снизилась на 27%.


Предпосевная обработка эвкалиптом сказалась положительно на росте стеблей кукурузы: их длина увеличилась в 2 раза, а стеблей пшеницы только на 3%. Обработка чистотелом в одинаковой степени повлияла на рост стеблей всех исследуемых культур – они выросли на 31%.



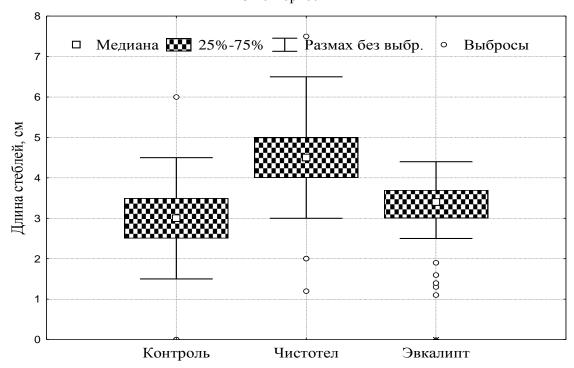


Рис. 5. Диаграмма размаха длины корней свеклы после предпосевной обработки чистотелом и эвкалиптом

Рис. 6. Диаграмма размаха длины стеблей свеклы после предпосевной обработки чистотелом и эвкалиптом

Таким образом, мелкие фракции исследованных лекарственных растений эвкалипта и чистотела оказывают положительное воздействие на всхожесть и рост растений в порядке убывания эффективности обработки: кукуруза, пшеница, свекла. Наибольший эффект дает обработка семян кукурузы при соотношении веса мелких фракций к весу семян 1:5 и 1:10: всхожесть увеличивается на 2-3 %, а вес растений на 19-77 %. Семена свеклы показали высокую отзывчивость на обработку лекарственными травами по величине всхожести семян при низкой прибавке веса.

На основании полученных данных рекомендуется использовать мелкие фракции лекарственных растений чистотела и эвкалипта для капсулирования семян. Следует отметить, что обработка семян мелкими фракциями лекарственных растений, которые являются отходами, более предпочтительна по сравнению с их обработкой химическими и биохимическими реагентами с позиции минимизации воздействия на окружающую среду.

Выводы.

- 1. Предпосевная обработка пшеницы, свеклы и кукурузы мелкими фракциями лекарственных растений повышает всхожесть семян по сравнению с контролем и для разных культур составляет 2-12 %. Наиболее отзывчива свекла в опыте с эвкалиптом всхожесть семян повышена на 12%.
- 2. На рост корней проростков всех исследуемых культур выявлен стимулирующий эффект при обработке семян эвкалиптом: длина корней увеличивается в среднем для пшеницы на 3,7%, свеклы на 15% и кукурузы на 80% по сравнению с контролем.
- 3. Уставлен максимальный положительный эффект предпосевной обработки эвкалиптом и чистотелом на развитие проростков кукурузы: длина корней увеличилась на 17,4% в опыте с чистотелом и на 55% при обработке эвкалиптом. Длина стеблей растений увеличилась соответственно на 80% (с чистотелом) и 104% (с эвкалиптом).

4. Наибольшее стимулирующее действие на вес целых проростков было обнаружено как для кукурузы при обработке чистотелом (на 19%), так и эвкалиптом (77%), а также при обработке пшеницы эвкалиптом (на 4%; причем вес корней при такой обработке увеличивался на 8%).

Литература:

- 1. Влияние регулятора роста силка на урожайность и качество зерна яровой пшеницы в условиях сухостепной зоны Республики Хакасия / Ларионов Г.И. [и др.] // Агрохимия. 2003. №8. С. 57-60.
- 2. Безуглова О.С. Удобрения и стимуляторы роста. Ростов-на-Дону: Феникс, 1999. 256 с.
- 3. Миловидов А.А., Щербинин Б.М. Подготовка семян к севу. Москва: Агропромиздат, 1986.
- 4. Бондарев Ю.П., Кузьменкова В.С., Присяжная А.А. Регулятор роста «Симбионт»: возможности и способы использования. Москва: НИА-Природа 2004. 31 с.
- 5. Жилеева Л.Д. Гнили озимой пшеницы и меры борьбы с ними // Земледелие. 2001. №4. С. 27.
- 6. Гродзинский А.М., Гродзинский Д.М. Краткий справочник по физиологии растений. Киев: Наукова думка, 1973. 591 с.

Literature:

- 1. Influence of silk growth regulator on yield and grain quality of spring wheat in drysteppe zone of the Republic of Khakassia / Larionov G.I. [and others] // Agrochemistry. 2003. № 8. P. 57-60.
- 2. Bezuglova O.S. Fertilizers and growth stimulators. Rostov-on-Don: Phoenix, 1999. 256 p.
- 3. Milovidov A.A., Shcherbinin B.M. Preparation of seeds for sowing. Moscow: Agropromizdat, 1986.
- 4. Bondarev Yu.P., Kuzmenkova V.S., Prisyazhnaya A.A. "Symbiont" growth regulator: opportunities and uses. Moscow: NIA-Nature 2004. 31 p.
- 5. Zhileeva L.D. Rotting of winter wheat and measures to combat it // Agriculture. 2001. № 4. P. 27.
- 6. Grodzinsky A.M., Grodzinsky D.M. Quick reference book on plant physiology. Kiev: Naukova Dumka, 1973. 591 p.