Маилян Дмитрий Рафаэлович, профессор кафедры железобетонных и каменных конструкций ФГБОУ ВПО «Ростовский государственный строительный университет»;

Хомич Леонид Анатольевич, аспирант ФГБОУ ВПО «Ростовский государственный университет»;

Блягоз Алик Моссович, кандидат технических наук, доцент кафедры строительных и общепрофессиональных дисциплин ФГБОУ ВПО «Майкопский государственный технологичес-кий университет».

ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОГО ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА ДЛЯ ОЦЕНКИ ВЛИЯНИЯ ПРЕДВАРИТЕЛЬНОГО ОБЖАТИЯ НА СВОЙСТВА ВЫСОКОПРОЧНОГО БЕТОНА

(рецензирована)

В статье приводятся результаты исследований влияния предварительного обжатия на свойства высокопрочных бетонов. Даны расчетные формулы и графики.

Ключевые слова: предварительное обжатие, высокопрочные бетоны, уровень обжатия.

Mailyan Dmitry Rafaelovich, professor of the Department of Reinforced Concrete and Masonry Structures of FSBEI HPE "Rostov State University of Civil Engineering";

Khomich Leonid Anatolievich, postgraduate of FSBEI HPE "Rostov State University;

Blyagoz Alec Mossovich, Candidate of Technical Sciences, assistant professor of the Department of Construction and General Professional disciplines of FSBEI HPE "Maikop State Technological University".

APPLICATION OF EXPERIMENT MATHEMATICAL PLANNING TO ASSESS THE EFFECT OF PRELIMINARY PRESSING OUT ON HIGH-STRENGTH CONCRETE PROPERTIES

(reviewed)

The article presents the results of the effect of preliminary compression on high strength concrete properties. Formulas and graphs have been presented.

Keywords: pre-compression, high-strength concrete, the level of compression.

Для установления зависимости коэффициентов, учитывающих влияния убывающего во времени предварительного обжатия на свойства высокопрочного бетона от основных факторов, был использован метод планирования эксперимента. В качестве основных факторов, влияющую на указанную зависимость, были приняты начальный уровень обжатия $\eta_{ au=rac{\sigma_{\delta au}}{R_{ au}}}$ и возраст бетона в

момент обжатия. При этом для данной зависимости принимались неизменными кубиковая прочность необжатого бетона ($R = 80 \text{ M}\Pi a$) и продолжительность обжатия t- $\sigma = 50 \text{ сут}$.

Значения факторов и интервалы варьирования приводятся в табл. 1.

Таблица 1 - К планированию экспериментов

Код	Значение кода	Значения факторов в натуральных единицах 0,35 28 0,20 21 0,55 49 0,15 7			
Основной уровень	0	0,35	28		
Интервал варьирования	ΔX_l	0,20	21		
Верхний уровень	+	0,55	49		
Нижний уровень	-	0,15	7		

Поставленная задача приводит к двухфакторному трехуровневому плану эксперимента. Матрица такого плана применительно к коэффициенту, учитывающему изменение кубиковой прочности высокопрочного бетона при длительном обжатии, приводится в таблице 2. В эту таблицу внесены опытные данные, обработка которых позволит вычислить коэффициенты уравнения

$$\hat{\mathbf{y}}_i = b_0 + b_I X_I + b_2 X_2 + b_{II} X_I^2 + b_{22} X_2^2 + b_{I2} X_I X_2 \tag{1}$$

 $\hat{\mathbf{y}}_i = b_0 + b_I X_I + b_2 X_2 + b_{II} X_I^2 + b_{22} X_2^2 + b_{I2} X_I X_2$ (1) Для рассматриваемого примера $\hat{\mathbf{y}}_i = \frac{R\alpha}{R}$, значения $X_i = \frac{\bar{X}i - \bar{X}_{i0}}{\Delta \bar{X}_i}$, где X_i – кодированное значение

фактора; \widetilde{X}_{t} — значение фактора в натуральных единицах; $\widetilde{X_{t0}}$ — значение основного уровня в натуральных единицах.

В данном примере

$$X_{I} = \frac{\eta_{\sigma} - 0.35}{0.2};$$

$$X_{2} = \frac{\sigma - 28}{21}.$$
(2)

$$X_2 = \frac{\sigma - 28}{21}. (3)$$

Входящие в уравнение (1) коэффициенты вычисляются по следующим формулам:

$$b_{0} = 0.2632 \sum_{I}^{N} y_{i} - 0.1579 (\sum_{I}^{N} \widetilde{X_{I}^{2}} y_{i} + \sum_{I}^{N} \widetilde{X_{I}^{2}} y_{i});$$

$$b_{I} = 0.1667 \sum_{I}^{N} \widetilde{X_{I}} y_{i};$$

$$b_{2} = 0.1667 \sum_{I}^{N} \widetilde{X_{2}} y_{i};$$

$$(4)$$

$$(5)$$

$$(6)$$

$$b_I = 0.1667 \sum_{i=1}^{N} \widetilde{X}_i \, y_i \,; \tag{5}$$

$$b_2 = 0.1667 \sum_{i=1}^{N} \widetilde{X}_2 y_i; (6)$$

$$b_{II} = -0.1579 \sum_{I}^{N} y_{i} + 0.5 \sum_{I}^{N} \widetilde{X}_{I}^{2} y_{i} - 0.1053 (\sum_{I}^{N} \widetilde{X}_{I}^{2} y_{i} + \sum_{I}^{N} \widetilde{X}_{2}^{2} y_{i});$$

$$b_{22} = -0.1579 \sum_{I}^{N} y_{i} + 0.5 \sum_{I}^{N} \widetilde{X}_{2}^{2} y_{i} - 0.1053 (\sum_{I}^{N} \widetilde{X}_{I}^{2} y_{i} + \sum_{I}^{N} \widetilde{X}_{2} y_{i});$$
(8)

$$b_{22} = -0.1579 \sum_{i=1}^{N} y_i + 0.5 \sum_{i=1}^{N} X_2^2 y_i - 0.1053 (\sum_{i=1}^{N} X_i^2 y_i + \sum_{i=1}^{N} \widetilde{X_2} y_i);$$
(8)

$$b_{I2} = 0.25 \sum_{i}^{N} \tilde{X}_{i} \tilde{X}_{2} y_{i}, \tag{8}$$

где N – общее число опытов в плане, включая нулевые точки.

Расчеты, выполненные по формулам (2)-(8) для оценки влияния предварительного обжатия на изменение кубиковой прочности, привели к уравнению типа (1), которое после отбрасывания незначимых членов (по критерию t_p Стьюдента) и преобразований, приобрело следующий вид:

$$\hat{\mathbf{y}}_i = \frac{R\alpha}{R} = 1,094 + 0,2125\eta_\tau(2,19 - \eta_\tau) + 1,1 \cdot 10^{-4}\tau \cdot (\tau - 70,73) - 4,52 \cdot 10^{-3}\eta_\tau\tau. \tag{9}$$

Для проверки полученного уточненного уравнения (9) вычисляем дисперсию адекватности по формуле

$$S_{ag}^2 = \frac{\sum_{I}^{N} (y_i - \tilde{y}_i)^2}{N - m - (n_0 - 1)},\tag{10}$$

 $S_{ag}^2=rac{\sum_I^N(y_i- ilde{y}_i)^2}{N-m-(n_0-1)},$ где m — число значимых членов полинома; n_0 — число дублирующих опытов.

Дисперсия параметров оптимизации определялась по формуле

$$S_y^2 = \frac{\sum_{I}^{N} (y_i - y_{oi})^2}{N - 1},\tag{11}$$

где

$$S_y^2 = \frac{\Sigma_l^N (y_l - y_{ol})^2}{N-1},$$

$$y_{oi} = \frac{\Sigma_{u=1}^{u=h_0} y_{oiu}}{h_0}.$$
 (12) Расчетное значение F_p — критерия Φ определялась по формуле

$$F_p = \frac{S_{ag}^2}{S_v^2} \tag{13}$$

 $F_p = \frac{S_{ag}^2}{S_y^2} \eqno(13)$ и сравнивалась с $F_{\rm T}$ для степеней свободы, с которыми определялись значения S_{ag}^2 и S_y^2 т.е. для $f_{ag=N-m-(n_0-1)} \ u \ f_{y=n_0-1}.$

Для рассматриваемого случая получено: $f_{ag}=3$; $f_{y}=2$; $F_{r}=19,2$. Расчетное значение критерия Фишера – $F_p = 1,07 < F_{\text{\tiny T}} = 19,2$.

Следовательно, уравнение (9) пригодно для оценки влияния уровня обжатия и возраста при обжатии на изменение кубиковой прочности бетона.

Коэффициент множественной корреляции уравнений регрессии определяется по формуле

$$R = \sqrt{1 - \frac{\sum_{l}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{l}^{N} (y_{i} - \ddot{y}_{i})^{2}}},$$
(14)

где \ddot{y} – среднестатистическое значение y_i .

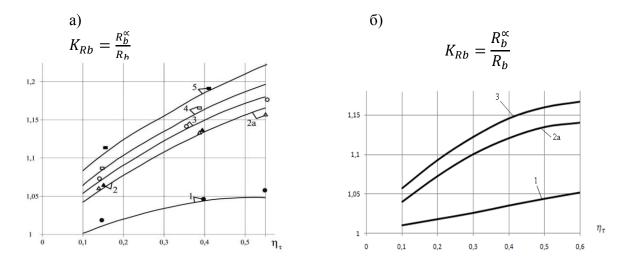
Для уравнения (9) коэффициент корреляции R оказался 0,993, что указывает на высокую тесноту корреляционной связи.

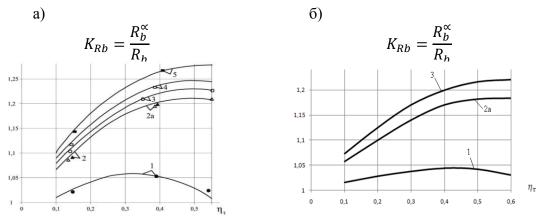
Анализ опытных данных показывает, что длительное, убывающее во времени, обжатие высокопрочного бетона при начальном уровне обжатия $\eta_{\tau} \le 0.55$ приводит к повышению кубиковой прочности до 20% (табл. 3).

Степень изменения кубиковой прочности при заданном классе и продолжительности обжатия зависит от начального уровня обжатия η_{τ} и возраста бетона при обжатии τ . Эта зависимость выражается уравнением (9). Как видно из рис. 1 это уравнение с достаточной точностью описывает наблюдаемые явления в пределах изменения η_{τ} от 0 до 0,55. При таких уровнях обжатия происходит уплотнение структуры бетона и повышение его прочности. При более высоких уровнях обжатия в высокопрочном бетоне преобладает деструктивные процессы, связанные с образованием микротрещин.

Это может привести к снижению прочности бетона вследствие влияния длительного обжатия высокого уровня. Вследствие этого уравнение (9) может быть использовано до уровней обжатия, не превышающих 0,55.

При этом в уравнения следует подставлять $\tau \le 50$ сут, так как при $\tau > 50$ сут. влиянием возраста бетона при обжатии можно пренебречь.




Рис. 1-Изменение кубиковой прочности бетона, вызванное предварительным обжатием: a- при $t-\tau=70$ сут.; кривые - по формуле (9), точки - по опытным данным; 6- при $t-\tau=8$ сут.; точки и кривые - по опытным данным; $1-\tau=50$ сут.; R=80 МПа; $3-\tau=12$ сут.; R=90 МПа; $2-\tau=14$ сут.; R=80 МПа; $4-\tau=10$ сут.; R=80 МПа; $2a-\tau=14$ сут.; R=90 МПа; R=90 МПа; R=90 МПа.

С помощью описанной выше методике планирования эксперимента была установлена зависимость коэффициента изменения призменной прочности $K_{Rb} = \frac{R_b^{\alpha}}{R_b}$ от начального уровня обжатия η_{τ} и возраста при обжатии τ . Уравнение типа (1) в этом случае после преобразования и проверки значимости входящих в него коэффициентов приняло вид

$$K_{Rb}=rac{R_b^{lpha}}{R_b}=1,0684+0,95\eta(1,106-\eta)-1,066\cdot10^{-4} au(71- au)-8,57\cdot10^{-3}\eta au$$
 (15) Для данного уравнения получено: $f_{ag}=3;\,f_y=2;\,F_{\scriptscriptstyle
m T}=19,2>F_p=12,3,\,$ что свидетельствует об

Для данного уравнения получено: $f_{ag} = 3$; $f_y = 2$; $F_{\rm T} = 19.2 > F_p = 12.3$, что свидетельствует об адекватности математического описания изучаемого явления. Коэффициент множественной корреляции уравнения регрессии (15) R = 0.992, что указывает на большую тесноту связи.

Как видно из рисунка 2 с увеличением интенсивности обжатия η_{τ} приращение коэффициента K_{Rb} уменьшается. Рост коэффициента K_{Rb} наблюдается до уровня η_{τ} = 0,4...0,6 в зависимости от возраста при обжатии. При превышении указанного уровня обжатия значения K_{Rb} начинает снижаться, их приращения становятся отрицательными.

Puc. 2 — Изменение призменной прочности высокопрочного бетона, вызванное предварительным обжатием:

а – при t –
$$\tau$$
 = 70 сут.; кривые – по формуле (15), точки – по опытным данным; б – при t – τ = 8 сут.; точки и кривые – по опытным данным; 1 – τ = 50 сут.; R = 80 МПа; 3 – τ = 12 сут.; R = 90 МПа;

$$2 - \tau = 14 \text{ cyt.};$$
 $R = 80 \text{ M}\Pi a;$ $4 - \tau = 10 \text{ cyt.};$ $R = 80 \text{ M}\Pi a;$ $2a - \tau = 14 \text{ cyt.};$ $R = 90 \text{ M}\Pi a;$ $5 - \tau = 7 \text{ cyt.};$ $R = 80 \text{ M}\Pi a.$

При очень высоких уровнях обжатия как кубиковая, так и призменная прочность снижаются и их значения могут оказаться ниже прочностных необжатых образцов.

Предварительное длительно действующее обжатие, как показали опыты [1, 2] приводит к существенному понижению прочности бетона на растяжение при последующем кратковременном испытании. Это является следствием образования структурных собственных напряжений и микротрещин в бетоне в процессе длительного обжатия. С увеличением уровня обжатия η_{τ} коэффициент K_{Rbt} уменьшается и в зависимости от возраста при обжатии, относительной прочности при обжатии $\frac{R_{\tau}}{R}$ и других факторов может достигать 0,5...0,6.

По опытным данным авторов для высокопрочного бетона с переменным во времени уровнем обжатия получено следующее уравнение регрессии для коэффициента, учитывающего изменение прочности при растяжении

$$K_{Rbt} = \frac{R_{bt}^{\alpha}}{R_p} = 0.9932 - 0.315\eta(1.585 + \eta) + 6.485 \cdot 10^{-5}\tau \cdot (53.51 - \tau) + 5.581 \cdot 10^{-3}\eta\tau$$
 (16)

Коэффициент множественной корреляции данного уравнения R=0,988. Теоретическое значение критерия Фишера при $f_{ag}=3$ и $f_y=2$ оказалось равным $F_{\rm T}=19,2$, что выше расчетного значения $F_p=4,8$.

С увеличением начального уровня убывающего во времени обжатия прочность на растяжение уменьшается по нелинейному закону — интенсивность этого процесса возрастает с повышением η_{τ} .

Литература:

- 1. Маилян Д.Р., Ахмед Аббуд, Ганди Джахажах. Метод расчета сжатых железобетонных элементов с учетом трансформированных диаграмм деформирования бетона при различных воздействиях: монография. 2008. 67 с.
- 2. Хунагов Р.А., Маилян Д.Р. Расчет двухслойных предварительно напряженных железобетонных панелей // Вестник Майкопского государственного технологического университета. 2011. Вып. 4. С. 33-36.

References:

- 1. Mailyan D.R., Ahmad Abboud, Gandhi Dzhahazhah. Calculation method of compressed concrete elements, with the transformed strain diagram of concrete under different treatments: monograph. 2008. 67 p.
- 2. Khunagov R.A., Mailyan D.R. Calculation of two-layer pre-stressed concrete panels // Bulletin of Maikop State Technological University. 2011. №4. P. 24-29.

Таблица 2 - План трехуровневого двухфакторного эксперимента и статические характеристики по оценке влияния обжатия на кубиковую прочность высокопрочного бетона

Матрица		Квадраты		Взаимо	теоретические значения				$R^{\text{of}}/R(X_i)$		$R^{\text{of}}/R(X_i)^2$					
	перем	переменных $(X_i)^2$		$ \Delta^{\cdot} $ $ 10^3 =$			Δ^2 10^5	₩	ે	~~	~~	$\frac{R^{\text{of}}}{R}(X_1 X_2)$	$ \begin{vmatrix} (y-\overline{y}) \\ 10^2 \end{vmatrix} $	$\begin{vmatrix} (y - \bar{y})^2 \\ 10^3 \end{vmatrix}$		
	$\widetilde{X_1}$	$\widetilde{X_2}$	$\widetilde{X_1}$	$\widetilde{X_2}$	$\widetilde{X_1}\widetilde{X_2}$	$y = \hat{y} = \hat{y}$	$\frac{R^{\text{of}}}{R}$ R^{of} R	y-ŷ	10	$\widetilde{X_1}y$	$\widetilde{X_2}y$	$\widetilde{X_1}^2 y$	$\widetilde{X_2}^2 y$	X_1X_2y	10-	10
1	+	+	+	+	+	1,056	1,056	0	0	+1,056	+1,056	+1,056	+1,056	+1,056	-3,1	0,96
2	+	-	+	+	-	1,225	1,228	-3	0,9	+1,225	-1,225	+1,225	+1,225	-1,225	13,8	19
3	-	+	+	+	-	1,019	1,02	-1	0,1	-1,019	+1,019	+1,019	+1,019	-1,019	6,8	4,62
4	-	-	+	+	+	1,112	1,114	-2	0,4	-1,112	+1,112	+1,112	+1,112	+1,112	2,5	0,625
5	+	0	+	0	0	1,1	1,094	6	3,6	+1,1	0	+1,1	0	0	1,3	0,169
6	-	0	+	0	0	1,022	1,017	5	2,5	-1,022	0	+1,022	0	0	-6,4	4,23
7	0	+	0	+	0	1,048	1,038	10	10	0	+1,048	0	+1,048	0	-3,9	1,52
8	0	-	0	+	0	1,188	1,171	17	29	0	-1,188	0	+1,188	0	10,1	10,2
9	0	0	0	0	0	1,062	1,055	7	4,9	0	0	0	0	0	-2,5	0,625
10	0	0	0	0	0	1,062	1,055	7	4,9	0	0	0	0	0	-2,5	0,625
11	0	0	0	0	0	1,062	1,055	7	4,9	0	0	0	0	0	-2,5	0,625
СУММЫ			11,956	11,903	53	61,2	0,228	-0,402	6,534	6,648	-0,076	0	43,2			

Таблица 3 - Показатели прочности (МПа) бетонных образцов после предварительного обжатия (средние по 3-4 близнецам)

Шифр групп образцов	Начальный уровень обжатия $\eta_{\tau} = \frac{\sigma_{6\tau}}{R_{\tau}}$	Кубик	совой	Призменной		При осевом растяжении		R_h	K_h^{of}	Rht.	K_b^{lpha}
		R;R ^{oб}	$\frac{R^{\alpha}}{R}$	$R_b; R_b^{\alpha}$	$\frac{R_b^{\alpha}}{R_b}$	R_{bt} ; R_{bt}^{α}	$\frac{R_{bt}^{\alpha}}{R_{bt}}$	$K_b = \frac{R_b}{R}$	$\frac{K_b^{\text{of}}}{K_b}$	$K_{bt} = \frac{R_{bt}}{R}$	$\frac{K_b^{\alpha}}{K_{bt}}$
1	2	3	4	5	6	7	8	9	10	11	12
B-1-50-8	0,148	80,99	1,015	59,30	1,018	3,160	0,99	0,732	1,003	0,039	0,975
B-2-50-8	0,401	82,83	1,038	61,04	1,048	2,824	0,885	0,737	1,01	0,0341	0,853
B-3-50-8	0,552	83,94	1,052	60,23	1,034	2,471	0,774	0,718	0,984	0,0294	0,735
B-1-50-70	0,151	81,31	1,019	59,59	1,023	3,144	0,985	0,733	1,004	0,0387	0,968
B-2-50-70	0,396	83,31	1,044	61,40	1,054	2,808	0,88	0,737	1,01	0,0337	0,843
B-3-50-70	0,551	84,26	1,056	59,77	1,026	2,439	0,764	0,709	0,971	0,0289	0,723
B-0-0-0	0	79,8	1	58,25	1	3,192	1	0,73	1	0,04	1
B-0-0-0	0	79,8	1	58,25	1	3,192	1	0,73	1	0,04	1
BA-1-7-70	0,152	90,50	1,112	67,80	1,143	3,082	0,942	0,749	1,027	0,0341	0,848
BA-2-7-70	0,408	96,70	1,188	75,21	1,268	2,540	0,776	0,778	1,067	0,0263	0,654
BA-1-10-70	0,144	88,39	1,086	66,31	1,118	3,128	0,956	0,75	1,029	0,0354	0,881
BA-1-10-70	0,382	94,74	1,164	73,42	1,238	2,612	0,798	0,775	1,063	0,0276	0,687
BA-1-14-70	0,148	86,60	1,064	64,65	1,09	3,149	0,962	0,746	1,023	0,0364	0,905
BA-2-14-70	0,391	92,30	1,134	71,06	1,198	2,683	0,82	0,77	1,056	0,0291	0,724
BA-0-0-0	0	81,39	1	59,31	1	3,273	1	0,729	1	0,0402	1
BA-0-0-0	0	81,39	1	59,31	1	3,273	1	0,729	1	0,0402	1
BB-1-12-8	0,133	98,47	1,07	73,77	1,093	3,592	0,971	0,749	1,022	0,0365	0,91
BB-2-12-8	0,348	104,36	1,134	80,53	1,193	3,255	0,88	0,772	1,053	0,0312	0,776
BB-3-12-8	0,570	106,75	1,16	81,54	1,208	2,775	0,75	0,764	1,042	0,026	0,647

BB-1-12-70	0,138	98,75	1,073	74,51	1,104	3,563	0,963	0,755	1,03	0,0361	0,899
BB-2-12-70	0,352	104,92	1,14	81,60	1,209	3,041	0,822	0,778	1,061	0,029	0,721
BB-3-12-70	0,555	108,04	1,174	82,88	1,228	2,560	0,692	0,767	1,046	0,0237	0,59
BB-0-0-0	0	92,03	1	67,49	1	3,700	1	0,733	1	0,0402	1
BB-0-0-0	0	92,03	1	67,49	1	3,700	1	0,733	1	0,0402	1