Михуб Ахмад, аспирант Ростовского государственного строительного университета;

Польской Петр Петрович, кандидат технических наук, профессор кафедры железобетонных и каменных конструкций Ростовского государственного строительного университета;

Котеленко Роман Валерьевич, аспирант Ростовского государственного строительного университета;

Блягоз Алик Моссович, кандидат технических наук, доцент кафедры строительных и общепрофессиональных дисциплин Майкопского государственного технологического университета, т.: 89184205021, e-mail: alfa-maikop@yandex.ru.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ БАЛОК. УСИЛЕННЫХ КОМПОЗИТНЫМИ МАТЕРИАЛАМИ ПО МЕТОДУ АНАЛОГОВОЙ ФЕРМЫ (рецензирована)

В статье рассматриваются вопросы, связанные с использованием концепции расчета по методу аналоговой фермы. Данная методика позволяет учесть различные виды разрушения балок, усиленных композитными материалами. Последнее весьма важно на этапе предварительного расчета несущей способности опытных образиов.

Ключевые слова: виды разрушения, усиление железобетонных балок, композитные материалы, метод аналоговой фермы, несущая способность, блок-схема программы.

Mihub Ahmad, post graduate student of Rostov State Construction University;

Polsky Peter Petrovich, Candidate of Technical Sciences, professor of the Department of Reinforced Concrete and Masonry structures, Rostov State Construction University;

Kotelenko Roman Valerjevich, post graduate student of Rostov State Construction University;

Blyagoz Alec Mossovich, Candidate of Technical Sciences, assistant professor of the Department of Construction and General Professional Disciplines of Maikop State Technological University, tel: 89184205021, e*mail: alfa-maikop@vandex.ru*.

CALCULATION OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH COMPOSITE MATERIALS ACCORDING TO THE METHOD OF ANALOGUE GIRDER (reviewed)

The article considers issues related to the use of the concept of calculation by the method of analogue girder. This method allows to consider different types of failure of beams reinforced with composite materials. The latter is essential for pre-calculate the bearing capacity of the tested patterns.

Key words: types of destruction, strengthening of reinforced concrete beams, composite materials, the method of analogue girder, carrying capacity, a block diagram of the program.

В последние годы в России и, в особенности, за рубежом усиление дефектных или недостаточно прочных железобетонных конструкций выполняется с использованием различных видов композитных материалов. Учитывая широкий диапазон прочностных и деформативных характеристик этих материалов, успешное и экономически выгодное их применение во многом зависит от знания реальной работы усиленных конструкций. Эффективность этой работы в первую очередь связана с механизмом взаимодействия между бетоном и наклеенными материалами, который невозможно выявить без проведения экспериментов и разработки на их основе достоверного расчетного аппарата.

Проведенные на настоящий момент (в своем большинстве зарубежные) экспериментальные исследования показали различный характер разрушения усиленных образцов и, как следствие, разный уровень приращения несущей способности.

Эти различия связаны с видом применяемых при усилении композитных материалов, соотношением процента стального и композитного армирования, размером сечения опытных образцов, наличием и количеством поперечного армирования, схемой загружения, технологией работ по усилению, наличием и видом анкерующих композитные материалы устройств.

Несмотря на многообразие факторов, влияющих на изменение прочностных и деформативных характеристик изгибаемых элементов, можно выделить шесть основных видов разрушения усиленных балок.

Первый – нарушение сцепления между бетоном и материалом усиления, которое может происходить у торца приклеенных композитных материалов, под сосредоточенными силами, либо вдоль наклеенной поверхности.

Второй – дробление сжатой зоны бетона и одновременное или последовательное достижение в поперечной арматуре предела текучести.

Третий – достижение в продольной и поперечной арматурах предельных напряжений.

Четвертый – дробление сжатой зоны бетона и (или) разрыва пластин усиления при достижении в стальной арматуре предела текучести. Указанный вид разрушения можно отнести к классическому и описать с помощью традиционной теории изгиба железобетонных балок. Расчетная схема поперечного сечения усиленной балки в предельном состоянии приведена на (рис. 1).

Рис. 1. Расчетная схема поперечного сечения в предельном состоянии

Пятый – имеет место при переармированных стальной арматурой сечениях, то есть когда площадь растянутой арматуры превышает предельную для сечения с одиночной арматурой.

Шестой – дробление бетона сжатой зоны при одновременном достижении предельных напряжений в продольной арматуре. Или только в продольной арматуре. При этом поперечная арматура отсутствует.

С учетом различных видов разрушения зафиксированных исследователями, предложено несколько расчетных моделей основанных на расчете усиленных элементов: по первой группе предельных состояний с использованием традиционной теории изгиба; нелинейном анализе; методе конечных элементов и др., которые положены в основу действующих международных норм по проектированию. Предложенные в этих нормах методики и заложенные в них гипотезы существенно отличаются от рекомендаций Российской Федерации.

К недостаткам зарубежных методик относятся: неполный охват схем разрушения усиленных элементов: использование упрощенной диаграммы деформирования и упругая работа бетона и арматуры в сжатой зоне; отсутствие учёта совместного действия момента и поперечной силы; отсутствие учета особенностей различных климатических зон, включая перенос температур.

В наибольшей степени указанных недостатков лишена зарубежная методика расчета усиленых элементов, основанная на концепции аналоговой модели фермы. Согласно её концепции, железобетонная балка с трещинами рассматривается как плоская ферма, в которой нижние продольные стержни и поперечные хомуты являются растянутыми элементами, а сжатая арматура и бетон в сжатой зоне являются сжатыми элементами (рис. 2).

Рис. 2. Аналоговая модель фермы для расчета усиленной железобетонной балки

Концепция ферменной аналогии с сохранением принятых за рубежом буквенных обозначений описывается следующим образом:

- сжатая зона представлена равнодействующей внутренних усилий (С) воспринимаемых сжатым бетоном и арматурой, а растянутая зона – силой (Т), воспринимаемой всей растянутой зоной.

- поперечная арматура представлена только вертикальными стержнями или хомутами.

- главные сжимающие напряжения σ_c , воспринимающие при двухоном сжатии в наклонной полосе

расположены под углом θ к продольной оси элемента.

- равнодействующие усилия в растянутой и поперечной арматуре способны воспринимать перпендикулярно действующие на них деформации.

- наружная композитная пластина усиления рассматривается как обычная арматура в предположении, что она имеет обсолютно надежное сцепление с поверхностью бетона.

- напряжения сцепления по всей поверхности контакта бетона и композитной арматуры принимается одинаковой и равной υ.

Полная русифицированная версия концепции аналоговой модели фермы приведена в статье Михуба Ахмада и П.П. Польского [1].

Расчет усиленных композитными материалами железобетонных балок выполняется при последовательном рассмотрении всех возможных видов разрушения опытных образцов. Схемы разрушения балок по шести видам разрушения и математические модели (формулы), по каждому виду разрушения приведены в табл. 1.

Несущая способность усиленной балки определяется по формуле:

$$V_{\partial a\hat{i}\delta} = \left(\frac{\tau}{f_c}\right)_i^{\min}.b.d.f_c , \qquad (1)$$

где отношение $(\frac{\tau}{f_c})_i^{\min}$ – минимальное значение безразмерной величины, которая определяется по

формулам (2)-(8) приведенным в табл. 1 с использованием различных параметров и коэффициентов по табл. 2.

Таблица 1 - Графическое и математическое описание концепции аналоговой модели фермы при различных видах ращрушения железобетонных балок, усиленных композитными материалами

Для снижения трудоемкости расчета при определении теоретической несущей способности усиленных балок, авторами статьи на базе Exel разработана программа, ход расчета которой представлен на блок-схеме (рис. 8).

Программа предусматривает введение 16 исходных параметров, характеризующих размеры сечения усиленных образцов, физико-механические свойства бетона и арматуры, включая композитную, а также вид и характер приложения нагрузки. Буквенное обозначение исходных параметров представлено на рис. 1 и 9.

Таблица 2 - Вычисление параметров и коэффициентов, необходимых для вычисления несущей способности

Вычисления параметров	Вычисления коэффициентов						
$P_{y} = \frac{A_{t} \times f_{ty}}{s}$	$\alpha = \frac{a}{d}$						
$U_{y} = b_{p} \left(2.17 + 0.02 \left(f_{c}' - 20 \right) \right)$	$\beta = \frac{l_a}{d}$						
$T_y = A_s f_{sy} + A_p f_{py}$ где $A_p = b_p \times t_p$	$\Phi = \frac{U_y}{P_y}$						
$\beta_1 = 0.85 - 0.008 (f_c - 30)$	$\eta = \frac{T_y}{b \times d \times f_c}$						
$\eta_s' = A_s' f_{sy}' / b d f_c$	$\psi = \frac{P_y}{b \times f_c}$						
$\gamma = d^{\prime} / h$	$a_{1} = \frac{T_{y}}{0.85 \times f_{c} \times b}$ $K = \frac{a_{1}}{\beta_{1} \times h}$						
начало							
а ; l_a ; b ; h ; f_c^{\prime} ; t_p ; b_p ; f_{py} ; A_s ; f_{sy}	$(A_{s}'; f_{sy}'; d'; A_{t}; s; f_{ty}; \xi = 0.9)$						
	Табл.2						
Вычисления коэффициентов							
д наличие поперечн	ой арматуры						
отношение $\left(\frac{\tau}{f_c}\right)_i$ при различных формах разрушения отно	ошение $\left(\frac{\tau}{f_c}\right)_i$ при различных формах разрушения						
$(\frac{\tau}{f_c})_1 \qquad (\frac{\tau}{f_c})_2 \qquad (\frac{\tau}{f_c})_3 \qquad (\frac{\tau}{f_c})_4 \qquad (\frac{\tau}{f_c})_5 \qquad (\frac{\tau}{f_c})_6 \qquad (\frac{\tau}{f_c})_$	$(\frac{\tau}{f_c})_5 \qquad (\frac{\tau}{f_c})_{6a} \qquad (\frac{\tau}{f_c})_{6b}$						
	ŢŢŢŢ						
Определение минимального значения $(\frac{\tau}{f_c})_i^{\min}$ Оп	ределение минимального значения $\left(\frac{\tau}{f_c}\right)_i^{\min}$						
Несущая способность сечения V_{Teop} =	$\left(\frac{\tau}{f_c}\right)_i^{\min}$.b.d.f _c						
конец	$\overline{}$						
Рис. 8. Блок-схема хода рас							
Í.	1 T						
L L							
h A_{i}							
	1						
·	l _a						

Рис. 9. Расчетная схема испытываемых балок

Для оценки разработанной программы в обработку были включены 21 опытный образец, 8 авторов из Франции, США и Канады, испытанные в 1995, 1996 и 2006 годах. Характеристика опытных образцов, а также схемы их обычного и композитного армирования и испытания приведены в табл. 3 и 4.

Исследователи	Геометрические параметры, схемы армирования и испытания опытных балок
Хусейн и др. (США) 1995 [2]	
Спадеа и др. (США) 1997 [3]	
Девид и др. (Франция) 1997 [4]	2¢14 150 2¢14 150 2¢14 150 10 130 130 130 130 130 10 10 10 10 10 10 10 10 10 1
Ардуаини и др. (США) 1997 [5]	
Хутчинсон (США) 1996 [6]	
Куантрил и др. (Франция) 1996 [7]	
Фаннинг (США) 1996 [8]	
Хукви (Канада) 2006 [9]	²⁰³ 2Φ13 2Φ13 2Φ13 203 203 203 203 203 203 203 203 203 20

Таблица 3 - Характеристика обытных образцов, используемых для анализа

Таблица 4	 Исходные 	параметры	исследуемых	балок
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00.7.0

	ой	f_{ty} (R _{sw}) MIIa	275	275	435	435	500	500	500	540	540	540	575	575	575	I	I	ı	350	250	250	250	250
)bi	оперечн	S (s _w) MM	60	60	150	150	130	130	130	150	150	100	150	75	75	ı		ı	50	135	135	135	203
й арматур	Ū	$\begin{array}{c} A_t \\ (A_{sw}) \\ MM^2 \end{array}$	56,5	56,5	56,5	25,1	56,5	56,5	56,5	56,5	56,5	100,5	56,5	56,5	56,5	ı		ı	14,1	56,5	56,5	56,5	127,2
и стально		f / sy (R _{sc}) МПа	200	200	435	435	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
ристик	й	<i>d′</i> мм	25	25	33	33	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	54
саракте	одольно	A_s^{\prime} MM ²	56,5	56,5	402	402	56,5	56,5	56,5	56,5	56,5	56,5	56,5	56,5	56,5	14,1	14,1	14,1	14,1	56,5	56,5	56,5	14,1
×	оdп	f _{sy} (R _s) МПа	414	414	435	435	500	500	500	540	540	340	575	575	575	350	350	350	350	250	250	250	350
		A_{s} MM ²	157	157	402	402	308	308	308	308	308	398	157	157	402	84,8	84,8	84,8	84,8	100,5	100,5	100,5	265,3
гики	ластин	${f_{py}}\ ({ m R_f})\ { m M}\Pi{ m a}$	269	269	2300	2300	55	55	2400	2906	2906	3000	1532	1532	1532	500	500	500	500	2400	250	2400	500
ктерис	ATHEIX I	<i>b</i> _{<i>p</i>} мм	100	100	80	80	150	150	100	150	150	300	150	150	150	80	80	80	80	80	80	80	203
Xana	KOMII031	$egin{array}{c} A_p \ (A_{ m f}) \ { m MM}^2 \end{array}$	200	300	96	96	450	006	120	195	390	51	172	09	172	96	96	96	96	96	480	96	104
Прочность	бетона	$f_{c}^{\ \prime}$ (0.85R _b) MIIa	31	31	30	30	40	40	40	33	33	30	54	54	54	0 <i>L</i>	42	42	85	37	32,5	32,5	41,36
	y	l_a	350	350	1750	1750	800	800	800	550	550	100	700	700	700	280	280	280	280	502	502	502	914,5
ические	ы балоі	а мм	400	400	1800	1800	006	006	900	700	700	1100	750	750	750	300	300	300	300	577	577	577	1067
еометр	араметр	h мм	150	150	300	300	300	300	300	200	200	400	150	150	150	100	100	100	100	150	150	150	305
		b мм	150	150	140	140	150	150	150	200	200	300	200	200	200	100	100	100	100	100	100	100	203
	IIIadhn	балок	FRB5	FRB7	A1.1	A3.1	Ъ2	P4	Ρ7	A4	A5	b2	A.115	B.040	C.115	Alc	A2b	A2c	B2	3A	4A	4B	Η1
И	ссле,	дователи	Xyce (C	ейн и Д США) 1995 [2]	цр.	Спадеа (СШ 19 [3	а и др. IA) 97 8]	Де (Ф	евид и Франці 1997 [4]	др. ия)	Ардуа (С	аини и США) 1997 [5]	пдр.	Хутч (CI 19	инсон ША) 996 6]	K	уантрі (Фран 19 [7	ил и др щия) 96 7]).	Фанни (США 1990 [8]	инг А) 5	Хул (Кан 20	кви ада) 06 9]

Примечания:

1 - В скобках даны обозначения приведенные в российских нормях.
 2 - Характеристики сечений и их буквенные обозначения даны на рис.(1и 9).

Сопоставление опытной и теоретической несущей способности балок, усиленных различными видами композитных материалов, представлено в табл. 5 и на рис. 10.

T. 6	0		U		C
$1 ao \pi u \pi a > -$	Спавнение	опытнои и	теоретическои	трочностеи	оапок
таолица с	opublicinite	ombi i non n	reopern reekon	ipo moeren	ounon

No	ШИФР БАЛОК	РАС П	CHËT HEO IO METO, V _{Teo}	СУЩЕЙ С ДУ ФЕРМ $_{p} = (\tau / f_{o})$	НЕС СПОСОБНО	Varc				
п/н		$(\frac{\tau}{f_c})_1$	$(rac{ au}{f_c})_2$	$(\frac{\tau}{f_c})_3$	$(\frac{\tau}{f_c})_4$	$(\frac{\tau}{f_c})_5$	$(\frac{\tau}{f_c})_6$	Опытная $V_{{\mathfrak I}{\kappa}{c}}$	Минимальна я теоретическа я V_{Teop}	$\overline{V_{Teop}}$
1	FRB5	23.572	118.91	34.387	40.09	41.7		30,0	23.572	1.27
2	FRB7	23.572	118.91	41.042	49.17	48.58		29,0	23.572	1.23
3	A1.1	45.384	182.1	54.344	59.35	74.48		43,4	45.384	0.96
4	A3.1	40.235	123.35	49.863	59.35	74.48		37,4	40.228	0.93
5	P2	68.129	251.18	47.787	53.63	58.06		50,5	47.787	1.06
6	P4	68.129	251.18	53.683	61.05	64.84		57,5	53.683	1.07
7	P7	50.302	251.18	104.62	132.6	120.4		68,0	50.302	1.35
8	A4	38.933	170.61	129.55	188.5	114.5		55,0	38.933	1.41
9	A5	38.933	170.61	197.38	334.2	66.92		45,0	38.933	1.16
10	b2	182.36	636.34	87.889	94.36	101.6		85,0	87.889	0.97
11	A.115	44.177	170.25	54.528	63.68	59.65		32,5	44.177	0.74
12	B.040	48.859	237.2	31.288	32.8	34.88		27,0	31.288	0.86
13	C.115	48.859	237.2	79.35	89.04	75.43		51,0	48.859	1.04
14	Alc				23.3	24.18	18,9	22,0	18,9	1.16
15	A2b				23.3	22.57	16,2	18,4	16,2	1.14
16	A2c				23.3	22.57	16,2	18,7	16,2	1.15
17	B2	13.222	56.276	17.9	23.3	23.68		17,0	13.222	1.29
18	3A	18.161	68.843	43.86	59.78	43.18		18,7	18.161	1.03
19	4A	17.674	64.332	27.63	33.95	30.74		14,0	17.674	0.79
20	4B	17.674	64.332	43.86	59.78	39.62		16,2	17.674	0.92
21	H1	75.647	259.8	33.804	37.22	40.06		28.5	33.804	0.84

Анализ полученых результатов показал следующее:

1. Минимальная теоретическа несущая способность при расчете по методу ферменной аналогии связана с тремя видами разрушения: отслоением композитного материала от бетона (первый вид) – 13 балок; достижение предельных напряжений в стальной продольной и поперечной арматуре (третий вид) – 3 балки; дробление бетоне сжатой зоны при отсуствии поперечной арматуры (шестой вид) – 3 опытных образца.

2. Максимальные отклонения опытной несущей способности усиленных балок по сравнению с теоретической связаны с **первым** видом разрушения и составляют "+"41 и "-"26 %. При этом отклонение в интервале "+"23 – 41% показали 5 образцов, а "-"21 – 26 % показали 2 образца.

3.Среднее значение отношения $\frac{V_{_{\Im\kappa c}}}{V_{_{Teop}}}$ составило 1,065, что свидетельствует о наличии некоторого

запаса прочности.

4. Среднее значение отношения $\frac{V_{_{Экс}}}{V_{_{Teop}}}$ составило 1,065 . при этом коэффициент вариации V для

указанного отношения составил 0,174, что превышает нормируемую для отечественных норм величину V = 0,135 при надежности 0,95.

выводы

Модель аналоговой фермы обеспечивает простую, но эффективную методику расчета и может рассматриваться как действительный инструмент на этапе предварительного расчета несушей способности усиленных композитными материалами железобетонных балок, а также при подборе вида, площади сечения и длины наклеиваемого материала и других исследуемых параметров.

	H1	0.46	0.17	Стекло- пластик	41.5	Хукви 2006 [9]				
	4B	0.77	0.64	Угле- пластик	32.5					
	4A	0.77	3.2	Стекло- пластик	32.5	Фаннинг 1996 [8]				
	3A	0.77	0.64	Угле- пластик	37	L - J				
	B2	1.06	0.96	Стекло- пластик	58					
	A2c	1.06	0.96	Стекло- пластик	42	Куантрил и др.				
	A2b	1.06	0.96	Стекло- пластик	42	1996 [7]				
	A1c	1,06	0,96	Стекло- пластик	70					
	C.115	1.55	0.57	Угле- пластик	54					
	B.040	0.6	0.2	Угле- пластик	54	Хутчинсон 1996 [6]				
	A.115	0.6	0.57	Угле- пластик	54					
	b2	0.35	0.04	Стекло- пластик	30					
	A5	0.86	0.98	Угле- пластик	33	Ардуаини и др. 1997 [5]				
	A4	0.86	0.49	Угле- пластик	33					
	P7	0.73	0.27	Угле- пластик	40					
	P4	0.73	2	Стекло- пластик	40	Девид и др. 1997 [4]				
	P2	0.73	1	Стекло- пластик	40					
	A3.1	1.02	0.23	Угле- пластик	30	Спадеа и др.				
	A1.1	1.02	0.23	Угле- пластик	30	[3]				
	FRB7	0.8	1.33	Стекло- пластик	31	Хусейн и др.				
	FRB5	0,8	0,88	Стекло- пластик	31	[2]				
100 90 - 70 - 70 - 70 - 70 - 10 - 10 - 10 -	Шифр балок	$\mu_s, 0/0$	$\mu_f, \%$	Вид Композитного материала	$f_c^/$ MIIa	Исследователи				

Рис. 10. Сопоставление опытных (□) и теоретических (■) результатов (с учетом предложений авторов) прочности исследуемых образцов

Литература:

1. Михуб Ахмад. Зарубежные методики расчета железобетонных конструкций, усиленных композитными материалами / Ахмад Михуб, П.П. Польской // Вопросы проектирования железобетонных конструкций: сб. науч. тр.- Ростов н/Д: РГСУ, 2011.- С. 52-61.

2. Flexural behavior of precracked reinforced concrete beams strengthened externally by frp plates / Hussain M. [and others] // ACI Struct.J. - 1992(1). - P. 14-22.

3. Spadea G., Bencardino F., Swamy R.N. Structural Behavior of Composite RC beams with externally bonded CFRP // J.Comp.Constr. ASCE. 1997. №2(3). P. 132-137.

4. David E., Djelal C., Buyle-Bodin F. Repair and strengthening of reinforced concrete beams using composite materials. Proc., 7 th Int. conf. on Struct. Faults and Repair. 1997. V. 2. P. 169-173.

5. Arduini M., Di Tommaso A., Nanni A. Brittle failure in FRP plate and sheet bonded beams // ACI Struct.J. 1997. V. 94(4). P. 363-370.

6. Hutchinson A.R., Rahimi H. Flxural strengthening of concrete beams with externally bonded FRP reinforcement. Proc. 2nd Int. conf. on Advanced compos.mat.in bridges and struct. (ACMBS). 1996. P. 519-526.

7. Quantrill, R.J., Hollaway, L.C., Thorne, A.M., and Parke, G.A.R. Preliminary research on the strengthening of reinforced concrete beams using GFRP. Proc., Non-Metallic (FRP) reinforcement for concrete struct. Paris: RILEM, 1995. P. 541-550.

8. Fanning P. Experimental testing and numerical modeling of reinforced concrete beams strengthened using fibre reinforced composite materials. Proc., 7th Int. conf. on Struct. Faults and Repair. 1997. V.2. P. 211-217.

9. Hoque M. 3D Nonlinear Mixed Finite-element Analysis of RC Beams and Plates with and without FRP Reinforcement. Canada: University of Manitoba, 2006.

References:

1. Mihub Ahmad, Polskoy P.P. Foreign methods of calculating reinforced concrete structures strengthened with composite materials/ Mihub Ahmad, Polskoy P.P. // Issues of design of reinforced concrete structures. Rostov-on-Don: RSCU, 2011, P.52-61.

2. Flexural behavior of precracked reinforced concrete beams strengthened externally by frp plates / Hussain M. [and others] // ACI Struct.J. - 1992(1). - P. 14-22.

3. Spadea G., Bencardino F., Swamy R.N. Structural Behavior Of Composite RC beams with externally bonded CFRP // J.Comp.Constr. ASCE. 1997. $N \ge 2(3)$. P.132-137.

4. David E., Djelal C., Buyle-Bodin F. Repair and strengthening of reinforced concrete beams using composite materials. Proc., 7th Int. conf. on Struct. Faults and Repair. 1997. V.2. P. 169-173.

5. Arduini M., Di Tommaso A., Nanni A. Brittle failure in FRP plate and sheet bonded beams // ACI Struct.J. 1997. V. 94(4). P. 363-370.

6. Hutchinson A. R., Rahimi H. Flxural strengthening of concrete beams with externally bonded FRP reinforcement.. Proc. 2nd Int. conf. on Advanced compos.mat.in bridges and struct. (ACMBS). 1996. P.519-526.

7. Quantrill, R.J., Hollaway, L.C., Thorne, A.M., and Parke, G.A.R. Preliminary research on the strengthening of reinforced concrete beams using GFRP. Proc., Non-Metallic (FRP) reinforcement for concrete struct. Paris: RILEM, 1995. P. 541-550.

8. Fanning P. Experimental testing and numerical modeling of reinforced concrete beams strengthened using fibre reinforced composite materials. Proc., 7th Int. conf. on Struct. Faults and Repair. 1997. V.2. P. 211-217.

9. Hoque M. 3D Nonlinear Mixed Finite-element Analysis of RC Beams and Plates with and without FRP Reinforcement. Canada: University of Manitoba, 2006.